The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation

The ternary transformation system: constitutive virG on a compatible plasmid dramatically... This paper describes a so-called ternary transformation system for plant cells. We demonstrate that Agrobacterium tumefaciens strain LBA4404 supplemented with a constitutive virG mutant gene (virGN54D) on a compatible plasmid is capable of very efficient T-DNA transfer to a diverse range of plant species. For the plant species Catharanthus roseus it is shown that increased T-DNA transfer results in increased stable transformation frequencies. Analysis of stably transformed C. roseus cell lines showed that, although the T-DNA transfer frequency is greatly enhanced by addition of virGN54D, only one or a few T-DNA copies are stably integrated into the plant genome. Thus, high transformation frequencies of different plant species can be achieved by introduction of a ternary plasmid carrying a constitutive virG mutant into existing A. tumefaciens strains in combination with standard binary vectors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation

Loading next page...
 
/lp/springer_journal/the-ternary-transformation-system-constitutive-virg-on-a-compatible-UF7OeNOU3O
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006440221718
Publisher site
See Article on Publisher Site

Abstract

This paper describes a so-called ternary transformation system for plant cells. We demonstrate that Agrobacterium tumefaciens strain LBA4404 supplemented with a constitutive virG mutant gene (virGN54D) on a compatible plasmid is capable of very efficient T-DNA transfer to a diverse range of plant species. For the plant species Catharanthus roseus it is shown that increased T-DNA transfer results in increased stable transformation frequencies. Analysis of stably transformed C. roseus cell lines showed that, although the T-DNA transfer frequency is greatly enhanced by addition of virGN54D, only one or a few T-DNA copies are stably integrated into the plant genome. Thus, high transformation frequencies of different plant species can be achieved by introduction of a ternary plasmid carrying a constitutive virG mutant into existing A. tumefaciens strains in combination with standard binary vectors.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off