The synthesis of asymmetric ethylenediamine derivatives catalyzed by ion-exchange resins

The synthesis of asymmetric ethylenediamine derivatives catalyzed by ion-exchange resins The ring-opening reaction of aziridine with alkylamines over a series of ion-exchange resins was investigated. Among these catalysts, D001-CC exhibited excellent catalytic performance. The catalysts were characterized by SEM and N2 adsorption–desorption. The results indicated that the selectivity of N,N-diethylethylenediamine mainly depended on the acidity and S BET of the resins. Strong Brönsted acid sites played an important role on the conversion of aziridine, and the distribution of acid sites on catalyst had a significant effect on the selectivity of N,N-diethylethylenediamine. The reaction parameters, such as reaction time, molar ratio, reaction temperature, and catalyst loading, were also optimized and N,N-diethylethylenediamine was obtained in an excellent yield of 97 %. Furthermore, D001-CC was efficiently recycled five times by simple treatment with large amounts of deionized water and mineral acid. Finally, a series of asymmetric ethylenediamine derivatives were successfully synthesized with this method. Therefore, a simple and versatile process for the synthesis of asymmetric ethylenediamine derivatives has been established over ion-exchange resins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The synthesis of asymmetric ethylenediamine derivatives catalyzed by ion-exchange resins

Loading next page...
 
/lp/springer_journal/the-synthesis-of-asymmetric-ethylenediamine-derivatives-catalyzed-by-E310lZpxIF
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1547-3
Publisher site
See Article on Publisher Site

Abstract

The ring-opening reaction of aziridine with alkylamines over a series of ion-exchange resins was investigated. Among these catalysts, D001-CC exhibited excellent catalytic performance. The catalysts were characterized by SEM and N2 adsorption–desorption. The results indicated that the selectivity of N,N-diethylethylenediamine mainly depended on the acidity and S BET of the resins. Strong Brönsted acid sites played an important role on the conversion of aziridine, and the distribution of acid sites on catalyst had a significant effect on the selectivity of N,N-diethylethylenediamine. The reaction parameters, such as reaction time, molar ratio, reaction temperature, and catalyst loading, were also optimized and N,N-diethylethylenediamine was obtained in an excellent yield of 97 %. Furthermore, D001-CC was efficiently recycled five times by simple treatment with large amounts of deionized water and mineral acid. Finally, a series of asymmetric ethylenediamine derivatives were successfully synthesized with this method. Therefore, a simple and versatile process for the synthesis of asymmetric ethylenediamine derivatives has been established over ion-exchange resins.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 6, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off