The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots

The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots Regions of the sugarcane bacilliform badnavirus genome were tested for promoter activity. The genomic region spanning nucleotides 5999–7420 was shown to possess promoter activity as exemplified by its ability to drive the expression of the coding region of the uidA gene of Escherichia coli, in both Avena sativa and Arabidopsis thaliana. In A. sativa, the promoter was active in all organs examined and, with the exception of the anthers where the expression was localized, this activity was constitutive. In A. thaliana, the promoter activity was constitutive in the rosette leaf, stem, stamen, and root and limited primarily to vascular tissue in the sepal and the silique. The transgene was inherited and active in progeny plants of both A. sativa and A. thaliana. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots

Loading next page...
 
/lp/springer_journal/the-sugarcane-bacilliform-badnavirus-promoter-is-active-in-both-cfAZ0MxUib
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006075415686
Publisher site
See Article on Publisher Site

Abstract

Regions of the sugarcane bacilliform badnavirus genome were tested for promoter activity. The genomic region spanning nucleotides 5999–7420 was shown to possess promoter activity as exemplified by its ability to drive the expression of the coding region of the uidA gene of Escherichia coli, in both Avena sativa and Arabidopsis thaliana. In A. sativa, the promoter was active in all organs examined and, with the exception of the anthers where the expression was localized, this activity was constitutive. In A. thaliana, the promoter activity was constitutive in the rosette leaf, stem, stamen, and root and limited primarily to vascular tissue in the sepal and the silique. The transgene was inherited and active in progeny plants of both A. sativa and A. thaliana.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off