The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status

The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its... Calmodulin (CaM) is a small Ca2+-binding protein highly conserved in eukaryotes. We have reported previously a novel rice CaM-like protein (OsCaM61) which contains an N-terminal CaM domain and a C-terminal extension with a potential prenylation site. Here we report in vitro activity assays confirm OsCaM61 as a functional CaM. Using the green fluorescent protein (GFP) as a visual marker, we further studied the subcellular localization of OsCaM61 in stably transformed tobacco cells. The GFP-OsCaM61 fusion protein was membrane-associated whereas OsCaM61-GFP was mainly detected in the nucleoplasm. GFP-OsCaM61 was transported into the nucleoplasm upon a block in isoprenoid biosynthesis by mevinolin treatment of cells. These results indicate that the prenylated OsCaM61 molecules are mainly membrane-associated whereas its unprenylated counterparts are transported into the nucleoplasm. Thus, OsCaM61 may play functions in co-ordinating Ca2+ signaling with isoprenoid metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status

Loading next page...
 
/lp/springer_journal/the-subcellular-localization-of-an-unusual-rice-calmodulin-isoform-XE0wLLPq6s
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013380814919
Publisher site
See Article on Publisher Site

Abstract

Calmodulin (CaM) is a small Ca2+-binding protein highly conserved in eukaryotes. We have reported previously a novel rice CaM-like protein (OsCaM61) which contains an N-terminal CaM domain and a C-terminal extension with a potential prenylation site. Here we report in vitro activity assays confirm OsCaM61 as a functional CaM. Using the green fluorescent protein (GFP) as a visual marker, we further studied the subcellular localization of OsCaM61 in stably transformed tobacco cells. The GFP-OsCaM61 fusion protein was membrane-associated whereas OsCaM61-GFP was mainly detected in the nucleoplasm. GFP-OsCaM61 was transported into the nucleoplasm upon a block in isoprenoid biosynthesis by mevinolin treatment of cells. These results indicate that the prenylated OsCaM61 molecules are mainly membrane-associated whereas its unprenylated counterparts are transported into the nucleoplasm. Thus, OsCaM61 may play functions in co-ordinating Ca2+ signaling with isoprenoid metabolism.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off