The SU Glycoprotein 120 from HIV-1 Penetrates into Lipid Monolayers Mimicking Plasma Membranes

The SU Glycoprotein 120 from HIV-1 Penetrates into Lipid Monolayers Mimicking Plasma Membranes Increasing evidence suggests that the HIV envelope binds through its surface (SU) gp120 not only to receptors and coreceptors, but also to other components of the cellular membrane where the glycolipids appear to be good candidates. To assess the ability of HIV-1 SU gp120 to penetrate into phospholipid membranes, we carried out a study of the interactions between a recombinant SU gp120 from HIV-1/HXB2 and artificial lipid monolayers mimicking the composition of the outer leaflet of the lymphocytes and which were spread at the air-water interface. We show that the protein, in its aggregated form, has amphipathic properties and that the insertion of this amphipathic species into lipids is favored by the presence of sphingomyelin. Furthermore, cholesterol enhances the penetration into mixed phosphatidylcholine-sphingomyelin monolayers. Coexistence of different physical states of the lipids and thus of domains appears to play a major role for protein penetration independently of the presence of receptors and coreceptors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The SU Glycoprotein 120 from HIV-1 Penetrates into Lipid Monolayers Mimicking Plasma Membranes

Loading next page...
 
/lp/springer_journal/the-su-glycoprotein-120-from-hiv-1-penetrates-into-lipid-monolayers-0pv9yzpsZk
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010007
Publisher site
See Article on Publisher Site

Abstract

Increasing evidence suggests that the HIV envelope binds through its surface (SU) gp120 not only to receptors and coreceptors, but also to other components of the cellular membrane where the glycolipids appear to be good candidates. To assess the ability of HIV-1 SU gp120 to penetrate into phospholipid membranes, we carried out a study of the interactions between a recombinant SU gp120 from HIV-1/HXB2 and artificial lipid monolayers mimicking the composition of the outer leaflet of the lymphocytes and which were spread at the air-water interface. We show that the protein, in its aggregated form, has amphipathic properties and that the insertion of this amphipathic species into lipids is favored by the presence of sphingomyelin. Furthermore, cholesterol enhances the penetration into mixed phosphatidylcholine-sphingomyelin monolayers. Coexistence of different physical states of the lipids and thus of domains appears to play a major role for protein penetration independently of the presence of receptors and coreceptors.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off