The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries

The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the Sturm-Liouville eigenvalue problem. We show that the number of power queries as well the number of qubits needed to solve the problems studied in this paper is a low degree polynomial. The implementation of power queries by a polynomial number of elementary quantum gates is an open issue. If this problem is solved positively for the power queries used for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very powerful computation device allowing us to solve NP-complete problems in polynomial time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries

Loading next page...
 
/lp/springer_journal/the-sturm-liouville-eigenvalue-problem-and-np-complete-problems-in-the-OWtHTyB5BU
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-006-0043-0
Publisher site
See Article on Publisher Site

Abstract

We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the Sturm-Liouville eigenvalue problem. We show that the number of power queries as well the number of qubits needed to solve the problems studied in this paper is a low degree polynomial. The implementation of power queries by a polynomial number of elementary quantum gates is an open issue. If this problem is solved positively for the power queries used for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very powerful computation device allowing us to solve NP-complete problems in polynomial time.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 28, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off