The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries

The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the Sturm-Liouville eigenvalue problem. We show that the number of power queries as well the number of qubits needed to solve the problems studied in this paper is a low degree polynomial. The implementation of power queries by a polynomial number of elementary quantum gates is an open issue. If this problem is solved positively for the power queries used for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very powerful computation device allowing us to solve NP-complete problems in polynomial time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries

Loading next page...
 
/lp/springer_journal/the-sturm-liouville-eigenvalue-problem-and-np-complete-problems-in-the-OWtHTyB5BU
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-006-0043-0
Publisher site
See Article on Publisher Site

Abstract

We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the Sturm-Liouville eigenvalue problem. We show that the number of power queries as well the number of qubits needed to solve the problems studied in this paper is a low degree polynomial. The implementation of power queries by a polynomial number of elementary quantum gates is an open issue. If this problem is solved positively for the power queries used for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very powerful computation device allowing us to solve NP-complete problems in polynomial time.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 28, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off