The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers

The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of... Laser cladding technology enables the regeneration or manufacturing of machine parts with the improved surface layer properties. The materials applied during the laser cladding processes very often contain hard and wear-resistant tungsten carbide (WC) particles. However, the parts obtained after the laser cladding have usually unsatisfactory surface quality and thus require post-process finishing. In addition, the content of WC particles causes that clad layers are difficult to cut. Therefore, in order to improve their machinability, the laser-assisted machining (LAM) technology can be applied. Nevertheless, the material removal mechanisms during LAM of WC/NiCr clad layers are not recognized. Thus, this study is focused on the estimation of minimum uncut chip thickness and analysis of cutting forces which are important factors describing the chip decohesion process. The proposed method is based on the novel approach dedicated directly to the oblique cutting, considering the zeroth tangential force increment located onto rounded cutting edge. The experimental procedure involves cutting force component (F c , F f , F p ) measurements in the range of variable cutting conditions, as well as the cutting tool’s micro-geometry inspection. On the basis of the measurements carried out, the force regression equations are formulated and subsequently applied to the determination of tangential force expression. Subsequently, the minimum uncut chip thickness is calculated on the basis of the equation derived from the zero tangential force increment condition and presented in function of cutting speed. The obtained results enable the effective selection of the cutting parameters during LAM of WC/NiCr clad layers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers

Loading next page...
 
/lp/springer_journal/the-study-on-minimum-uncut-chip-thickness-and-cutting-forces-during-K81gQBmm40
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0035-5
Publisher site
See Article on Publisher Site

Abstract

Laser cladding technology enables the regeneration or manufacturing of machine parts with the improved surface layer properties. The materials applied during the laser cladding processes very often contain hard and wear-resistant tungsten carbide (WC) particles. However, the parts obtained after the laser cladding have usually unsatisfactory surface quality and thus require post-process finishing. In addition, the content of WC particles causes that clad layers are difficult to cut. Therefore, in order to improve their machinability, the laser-assisted machining (LAM) technology can be applied. Nevertheless, the material removal mechanisms during LAM of WC/NiCr clad layers are not recognized. Thus, this study is focused on the estimation of minimum uncut chip thickness and analysis of cutting forces which are important factors describing the chip decohesion process. The proposed method is based on the novel approach dedicated directly to the oblique cutting, considering the zeroth tangential force increment located onto rounded cutting edge. The experimental procedure involves cutting force component (F c , F f , F p ) measurements in the range of variable cutting conditions, as well as the cutting tool’s micro-geometry inspection. On the basis of the measurements carried out, the force regression equations are formulated and subsequently applied to the determination of tangential force expression. Subsequently, the minimum uncut chip thickness is calculated on the basis of the equation derived from the zero tangential force increment condition and presented in function of cutting speed. The obtained results enable the effective selection of the cutting parameters during LAM of WC/NiCr clad layers.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off