The Structural and Functional State of Soil Microbiota in a Chemically Polluted Environment

The Structural and Functional State of Soil Microbiota in a Chemically Polluted Environment The structural and functional diversity of the main ecological trophic groups of soil microorganisms in meadow soils of the Central Urals anthropogenically contaminated with heavy metals was studied. The increase in the total numbers of these microorganisms in technozems, in comparison with those in agrozems, is due to the higher abundance of iron-reducing, denitrifying, nitrogen-fixing, and sulfate-reducing bacteria, an increase in cellulolytic activity, and the dependence of these characteristics on the toxic load of the soil. A reductive structure of the microbial community with the predominance of r-strategists, which reflects earlier stages of microbiocenoses succession under soil contamination, is formed under soil pollution with heavy metals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biology Bulletin Springer Journals

The Structural and Functional State of Soil Microbiota in a Chemically Polluted Environment

Loading next page...
 
/lp/springer_journal/the-structural-and-functional-state-of-soil-microbiota-in-a-chemically-7rZi8aV0I2
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Life Sciences, general; Cell Biology; Biochemistry, general; Zoology; Ecology
ISSN
1062-3590
eISSN
1608-3059
D.O.I.
10.1134/S1062359017100193
Publisher site
See Article on Publisher Site

Abstract

The structural and functional diversity of the main ecological trophic groups of soil microorganisms in meadow soils of the Central Urals anthropogenically contaminated with heavy metals was studied. The increase in the total numbers of these microorganisms in technozems, in comparison with those in agrozems, is due to the higher abundance of iron-reducing, denitrifying, nitrogen-fixing, and sulfate-reducing bacteria, an increase in cellulolytic activity, and the dependence of these characteristics on the toxic load of the soil. A reductive structure of the microbial community with the predominance of r-strategists, which reflects earlier stages of microbiocenoses succession under soil contamination, is formed under soil pollution with heavy metals.

Journal

Biology BulletinSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial