The strategy of Na+ compartmentation and growth of Atriplex centralasiatica in adaptation to saline environments

The strategy of Na+ compartmentation and growth of Atriplex centralasiatica in adaptation to... In this study, we investigated the adaptation strategy employed by Atriplex centralasiatica Iljin in response to high salinity. When grown in high saline environments (100–200 mM NaCl), A. centralasiatica plants were larger and more succulent. This increased growth and water uptake was correlated with a large and specific cellular accumulation of sodium, demonstrating that in A. centralasiatica Na+ is beneficial rather than toxic. More than 95% of Na+ absorbed by salt-treated A. centralasiatica plants accumulated in shoots, especially in leaves; approximately 98% of Na+ that accumulated in leaves was localized in leaf protoplasts, a situation that was responsible for the decreased photosynthetic rate observed with increasing salt concentration. Because of the greater leaf area per plant found under saline conditions, no reduction in biomass of individual plants was observed. Measurements on isolated tonoplast-enriched membrane vesicles derived from the leaves of A. centralasiatica revealed increased V-H+-ATPase hydrolytic activity and V-H+-ATPase proton pump activity in salt-treated leaves compared with controls. These results suggest that, as an adaptation to saline environments, A. centralasiatica can efficiently sequester Na+ into vacuoles, thereby increasing leaf area to maintain its CO2 assimilation capabilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The strategy of Na+ compartmentation and growth of Atriplex centralasiatica in adaptation to saline environments

Loading next page...
 
/lp/springer_journal/the-strategy-of-na-compartmentation-and-growth-of-atriplex-kKN7q5rSNx
Publisher
Springer US
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714020113
Publisher site
See Article on Publisher Site

Abstract

In this study, we investigated the adaptation strategy employed by Atriplex centralasiatica Iljin in response to high salinity. When grown in high saline environments (100–200 mM NaCl), A. centralasiatica plants were larger and more succulent. This increased growth and water uptake was correlated with a large and specific cellular accumulation of sodium, demonstrating that in A. centralasiatica Na+ is beneficial rather than toxic. More than 95% of Na+ absorbed by salt-treated A. centralasiatica plants accumulated in shoots, especially in leaves; approximately 98% of Na+ that accumulated in leaves was localized in leaf protoplasts, a situation that was responsible for the decreased photosynthetic rate observed with increasing salt concentration. Because of the greater leaf area per plant found under saline conditions, no reduction in biomass of individual plants was observed. Measurements on isolated tonoplast-enriched membrane vesicles derived from the leaves of A. centralasiatica revealed increased V-H+-ATPase hydrolytic activity and V-H+-ATPase proton pump activity in salt-treated leaves compared with controls. These results suggest that, as an adaptation to saline environments, A. centralasiatica can efficiently sequester Na+ into vacuoles, thereby increasing leaf area to maintain its CO2 assimilation capabilities.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 7, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off