The Stage of Ultrafast Relaxation in Micellar Surfactant Solutions

The Stage of Ultrafast Relaxation in Micellar Surfactant Solutions The Becker–Döring kinetic equations are employed to describe the stage of ultrafast relaxation in micellar surfactant solutions, which ends in the establishment of a quasi-equilibrium distribution in the premicellar region of aggregate sizes. This is performed by analyzing the spectrum of the eigenvalues of the matrix of kinetic coefficients of the linearized Becker–Döring difference equations, which describes the complete multistage relaxation in a micellar system. The first value of the spectrum ordered as an ascending series is equal to zero (infinite relaxation time), thereby corresponding to the law of conservation of the surfactant quantity. The second value is very small; it differs from the series of subsequent values by several orders of magnitude and determines the time of slow relaxation. The other eigenvalues describe the processes of fast relaxation and comprise the contributions from the relaxation processes in both micellar and premicellar regions of aggregate sizes. In the latter region of the spectrum, the contribution of the ultrafast relaxation can be numerically distinguished. The obtained result is confirmed by the analysis of the spectrum of relaxation times of premicellar aggregates, which are considered as a closed system. It is also shown that the spectrum of ultrafast relaxation times is mainly determined by the first diagonal elements of the matrix of the linearized Becker–Döring equations and can be described analytically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Colloid Journal Springer Journals

The Stage of Ultrafast Relaxation in Micellar Surfactant Solutions

Loading next page...
 
/lp/springer_journal/the-stage-of-ultrafast-relaxation-in-micellar-surfactant-solutions-31zrM9Rd9f
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Polymer Sciences; Surfaces and Interfaces, Thin Films
ISSN
1061-933X
eISSN
1608-3067
D.O.I.
10.1134/S1061933X1803002X
Publisher site
See Article on Publisher Site

Abstract

The Becker–Döring kinetic equations are employed to describe the stage of ultrafast relaxation in micellar surfactant solutions, which ends in the establishment of a quasi-equilibrium distribution in the premicellar region of aggregate sizes. This is performed by analyzing the spectrum of the eigenvalues of the matrix of kinetic coefficients of the linearized Becker–Döring difference equations, which describes the complete multistage relaxation in a micellar system. The first value of the spectrum ordered as an ascending series is equal to zero (infinite relaxation time), thereby corresponding to the law of conservation of the surfactant quantity. The second value is very small; it differs from the series of subsequent values by several orders of magnitude and determines the time of slow relaxation. The other eigenvalues describe the processes of fast relaxation and comprise the contributions from the relaxation processes in both micellar and premicellar regions of aggregate sizes. In the latter region of the spectrum, the contribution of the ultrafast relaxation can be numerically distinguished. The obtained result is confirmed by the analysis of the spectrum of relaxation times of premicellar aggregates, which are considered as a closed system. It is also shown that the spectrum of ultrafast relaxation times is mainly determined by the first diagonal elements of the matrix of the linearized Becker–Döring equations and can be described analytically.

Journal

Colloid JournalSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off