The stability and development of tip and root vortices behind a model wind turbine

The stability and development of tip and root vortices behind a model wind turbine When designing new wind farms, one has to rely on models describing the flow field around and inside the farm, since direct numerical simulation is far too computationally expensive. In order to develop better models for power prediction of wind farms, knowledge about the flow field around turbines, the stability of the wakes and the interaction between them is essential. Since the conditions during field measurements are difficult to control, wind tunnel measurements play an important role when studying wakes behind wind turbines. Within the present work, an experimental methodology has been developed to study the evolution and stability of the tip vortices shed from the rotor blades of a small-scale turbine model. The stability of the tip vortices was studied by introducing a periodic disturbance to the flow, which is shown to have a clear effect on the development of the vortices. Prior to the vortex breakdown, clear signs of vortex pairing were also observed. A parameter study was performed by varying the amplitude and frequency of the forced disturbance, and the effect on the tip vortices was evaluated. This experiment is one of the first where the influence of a periodic disturbance on a wind turbine wake is studied, something that previously has been performed in a number of numerical studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The stability and development of tip and root vortices behind a model wind turbine

Loading next page...
 
/lp/springer_journal/the-stability-and-development-of-tip-and-root-vortices-behind-a-model-aD0Mi0nho0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1591-6
Publisher site
See Article on Publisher Site

Abstract

When designing new wind farms, one has to rely on models describing the flow field around and inside the farm, since direct numerical simulation is far too computationally expensive. In order to develop better models for power prediction of wind farms, knowledge about the flow field around turbines, the stability of the wakes and the interaction between them is essential. Since the conditions during field measurements are difficult to control, wind tunnel measurements play an important role when studying wakes behind wind turbines. Within the present work, an experimental methodology has been developed to study the evolution and stability of the tip vortices shed from the rotor blades of a small-scale turbine model. The stability of the tip vortices was studied by introducing a periodic disturbance to the flow, which is shown to have a clear effect on the development of the vortices. Prior to the vortex breakdown, clear signs of vortex pairing were also observed. A parameter study was performed by varying the amplitude and frequency of the forced disturbance, and the effect on the tip vortices was evaluated. This experiment is one of the first where the influence of a periodic disturbance on a wind turbine wake is studied, something that previously has been performed in a number of numerical studies.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off