The spinal muscular atrophy gene region at 5q13.1 has a paralogous chromosomal region at 6p21.3

The spinal muscular atrophy gene region at 5q13.1 has a paralogous chromosomal region at 6p21.3 Paralogous regions are duplicated segments of chromosomal DNA that have been acquired during the evolution of the genome. Subsequent divergent evolution of the genes within paralogous regions can lead to the formation of gene families. Here, we report the identification of a region on Chromosome (Chr) 6 at 6p21.3 that is paralogous with the Spinal Muscular Atrophy (SMA) gene region on Chr 5 at 5q13.1. Partial characterization of this region identified nine sequences all of which are highly homologous to DNA sequences of the SMA gene region at 5ql3.1. These sequences include four β-glucuronidase sequences, two retrotransposon sequences, a novel cDNA, a Sequence Tagged Site (STS), and one that is homologous to exon 9 of the Neuronal Apoptosis Inhibitor Protein (NAIP) gene. The 6p21.3 paralogous SMA region may contain genes that are related to those in the SMA region at 5q13.1; however, a direct association of this region with SMA is unlikely given that no linkage of SMA with Chr 6 has been reported. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The spinal muscular atrophy gene region at 5q13.1 has a paralogous chromosomal region at 6p21.3

Loading next page...
 
/lp/springer_journal/the-spinal-muscular-atrophy-gene-region-at-5q13-1-has-a-paralogous-1WJDFGV6aE
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900732
Publisher site
See Article on Publisher Site

Abstract

Paralogous regions are duplicated segments of chromosomal DNA that have been acquired during the evolution of the genome. Subsequent divergent evolution of the genes within paralogous regions can lead to the formation of gene families. Here, we report the identification of a region on Chromosome (Chr) 6 at 6p21.3 that is paralogous with the Spinal Muscular Atrophy (SMA) gene region on Chr 5 at 5q13.1. Partial characterization of this region identified nine sequences all of which are highly homologous to DNA sequences of the SMA gene region at 5ql3.1. These sequences include four β-glucuronidase sequences, two retrotransposon sequences, a novel cDNA, a Sequence Tagged Site (STS), and one that is homologous to exon 9 of the Neuronal Apoptosis Inhibitor Protein (NAIP) gene. The 6p21.3 paralogous SMA region may contain genes that are related to those in the SMA region at 5q13.1; however, a direct association of this region with SMA is unlikely given that no linkage of SMA with Chr 6 has been reported.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 21, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off