The Specific Force of Single Intact Extensor Digitorum Longus and Soleus Mouse Muscle Fibers Declines with Aging

The Specific Force of Single Intact Extensor Digitorum Longus and Soleus Mouse Muscle Fibers... In the present study we measured, for the first time, the isometric specific force (SF, force normalized to cross sectional area) generated by single intact fibers from fast- (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from young adult (2–6), middle-aged (12–14) and old (20–24 month-old) mice. SF has also been measured in single intact flexor digitorum brevis fibers from young mice. Muscle fibers have been classified into fast- or slow-twitch based on the contraction kinetics. Maximum SF recorded in EDL and soleus fibers from young and middle-aged mice did not differ significantly. A significant age-dependent decline in maximum SF was recorded in EDL and soleus fibers from young or middle-aged to old mice. The SF was 377 ± 18, 417 ± 20 and 279 ± 18 kPa for EDL fibers from young, middle-aged and old mice, respectively and 397 ± 17, 405 ± 24 and 320 ± 33 kPa for soleus fibers from age-matched mice, respectively. The frequency needed to elicit maximum force in EDL and soleus fibers from middle-aged to old mice did not differ significantly. In conclusion, the specific force developed by both fast and slow-twitch single intact muscle fibers declines with aging and more significantly in the former. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Specific Force of Single Intact Extensor Digitorum Longus and Soleus Mouse Muscle Fibers Declines with Aging

Loading next page...
 
/lp/springer_journal/the-specific-force-of-single-intact-extensor-digitorum-longus-and-r1Rwb6njSK
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010025
Publisher site
See Article on Publisher Site

Abstract

In the present study we measured, for the first time, the isometric specific force (SF, force normalized to cross sectional area) generated by single intact fibers from fast- (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from young adult (2–6), middle-aged (12–14) and old (20–24 month-old) mice. SF has also been measured in single intact flexor digitorum brevis fibers from young mice. Muscle fibers have been classified into fast- or slow-twitch based on the contraction kinetics. Maximum SF recorded in EDL and soleus fibers from young and middle-aged mice did not differ significantly. A significant age-dependent decline in maximum SF was recorded in EDL and soleus fibers from young or middle-aged to old mice. The SF was 377 ± 18, 417 ± 20 and 279 ± 18 kPa for EDL fibers from young, middle-aged and old mice, respectively and 397 ± 17, 405 ± 24 and 320 ± 33 kPa for soleus fibers from age-matched mice, respectively. The frequency needed to elicit maximum force in EDL and soleus fibers from middle-aged to old mice did not differ significantly. In conclusion, the specific force developed by both fast and slow-twitch single intact muscle fibers declines with aging and more significantly in the former.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off