The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow

The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow Single point turbulence statistics measured directly above and in close proximity to the wall in a fully developed, fully rough, turbulent open channel flow are reported. In order to investigate the spatial inhomogeneity of the turbulence, the measurements were obtained over a matrix of measurement points in a plane parallel to the roughness-bed surface. The measurements were obtained with a three-component laser Doppler velocimeter (3D-LDV) system. The turbulence statistics associated with the vertical velocity component, including conditioned mean vertical velocities, rms distributions, and mean vertical momentum fluxes are emphasized. For the Reynolds and Froude numbers associated with this investigation, and with the specific roughness geometry employed in this study (a packed bed of uniform-diameter spheres), it is found that the distribution of the local mean vertical velocity, <w>, has non-zero contributions over the roughness pattern and that this contributes to a mean net vertical momentum flux into the roughness bed. However, the net vertical momentum flux due to turbulent fluctuations is positive out of the bed, consistent with smooth-wall behavior. These results are relevant to the study of sediment entrainment and suspension/deposition as well as the exchange and transport of chemical species between the channel core flow and the fluid within the roughness bed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow

Loading next page...
 
/lp/springer_journal/the-spatial-inhomogeneity-of-turbulence-above-a-fully-rough-packed-bed-6Blxx3Zzvx
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003489900107
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial