The short-term responses of glutathione and phytochelation synthetic pathways genes to additional nitrogen under cadmium stress in poplar leaves

The short-term responses of glutathione and phytochelation synthetic pathways genes to additional... Earlier it was noticed that the supplementary nitrogen to nutritive solution of the cadmium stressed (Cd-stressed) plants can alleviate the toxic effects of this metal on the plants and improve plant growth performance. But the underlying mechanisms of such detoxification effect of nitrogen were not studied. In this study, a ten-day responses of related nitrogen-synthesized genes including γ-glutamylcysteine synthetase (γ-GCs), glutathione synthetase (ECGs) and phytochelatin synthase (PCs) involved in glutathione (ECG) and phytochelation (PC) synthetic pathways were examined. The plant growth performance and leaf chlorophyll content were examined at the final harvest. It was shown that the supplement of additional nitrogen to poplar plants under cadmium stress could significantly up-regulate the expression levels of γ-GCs, ECGs and PCs genes in plant leaves during the first 12 hours. Furthermore, cadmium stressed plants with additional nitrogen supplement showed significant enhancement in growth performance and increase in leaf chlorophyll content compared to sole cadmium stressed plants. Our results suggest that additional nitrogen could stimulate a short-term defense system in poplar plants through ECG and PC synthetic pathways. It is contribute to the alleviation of the toxic symptoms in polar plants caused by cadmium stress. This study provides a potential method to render harmless cadmium toxicity in stressed plants with nitrogen fertilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The short-term responses of glutathione and phytochelation synthetic pathways genes to additional nitrogen under cadmium stress in poplar leaves

Loading next page...
 
/lp/springer_journal/the-short-term-responses-of-glutathione-and-phytochelation-synthetic-Vl3Ey520jL
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716060066
Publisher site
See Article on Publisher Site

Abstract

Earlier it was noticed that the supplementary nitrogen to nutritive solution of the cadmium stressed (Cd-stressed) plants can alleviate the toxic effects of this metal on the plants and improve plant growth performance. But the underlying mechanisms of such detoxification effect of nitrogen were not studied. In this study, a ten-day responses of related nitrogen-synthesized genes including γ-glutamylcysteine synthetase (γ-GCs), glutathione synthetase (ECGs) and phytochelatin synthase (PCs) involved in glutathione (ECG) and phytochelation (PC) synthetic pathways were examined. The plant growth performance and leaf chlorophyll content were examined at the final harvest. It was shown that the supplement of additional nitrogen to poplar plants under cadmium stress could significantly up-regulate the expression levels of γ-GCs, ECGs and PCs genes in plant leaves during the first 12 hours. Furthermore, cadmium stressed plants with additional nitrogen supplement showed significant enhancement in growth performance and increase in leaf chlorophyll content compared to sole cadmium stressed plants. Our results suggest that additional nitrogen could stimulate a short-term defense system in poplar plants through ECG and PC synthetic pathways. It is contribute to the alleviation of the toxic symptoms in polar plants caused by cadmium stress. This study provides a potential method to render harmless cadmium toxicity in stressed plants with nitrogen fertilization.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off