The sequence of the full spike S1 glycoprotein of infectious bronchitis virus circulating in Egypt reveals evidence of intra-genotypic recombination

The sequence of the full spike S1 glycoprotein of infectious bronchitis virus circulating in... Infectious bronchitis virus (IBV) continues to circulate worldwide, with a significant impact on the poultry industry and affecting both vaccinated and unvaccinated flocks. Several studies have focused on the hypervariable regions (HVRs) of the spike gene (S1); however, genetic and bioinformatics studies of the whole S1 gene are limited. In this study, the whole S1 gene of five Egyptian IBVs was genetically analyzed. Phylogenetic analysis revealed that the Egyptian IBVs are clustered within two distinct groups: the classic group resembling the GI-1 genotype (vaccine strains) and the variant group (field strains) of the GI-23 genotype. The variant genotype was divided into two distinct subgroups (Egy/var I and Egy/var II) resembling the Israeli variants IS/1494 and IS885 strain, respectively. Significant amino acid sequence differences between the two subgroups, especially in the epitope sites, were identified. A deletion at position 63 and an I69A/S substitution mutation associated with virus tropism were detected in the receptor-binding sites. The deduced amino acid sequence of HVRs of the variant subgroups indicated different genetic features in comparison to the classic vaccine group (H120 lineage). The Egyptian variant IBVs also contained additional N-glycosylation sites compared to the classical viruses. Recombination analysis gave evidence for distinct patterns of origin by recombination throughout the S1 gene, suggesting that the recent virus IBV-EG/1586CV-2015 emerged as a recombinant of two viruses from the variant groups Egy/var I and Egy/var II, providing another example of intra-genotypic recombination among IBVs and the first example of recombination within the GI-23 genotype. Our data suggest that both mutation and recombination may be contributing to the emergence of IBV variants. Moreover, we found that the commercially used vaccines are genotypically distant from the circulating field strains. Hence, continuous follow-up of the current vaccine strategy is highly recommended for better control and prevention of infectious bronchitis virus in the poultry sector in Egypt. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The sequence of the full spike S1 glycoprotein of infectious bronchitis virus circulating in Egypt reveals evidence of intra-genotypic recombination

Loading next page...
 
/lp/springer_journal/the-sequence-of-the-full-spike-s1-glycoprotein-of-infectious-kkGEqj4O19
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-3042-1
Publisher site
See Article on Publisher Site

Abstract

Infectious bronchitis virus (IBV) continues to circulate worldwide, with a significant impact on the poultry industry and affecting both vaccinated and unvaccinated flocks. Several studies have focused on the hypervariable regions (HVRs) of the spike gene (S1); however, genetic and bioinformatics studies of the whole S1 gene are limited. In this study, the whole S1 gene of five Egyptian IBVs was genetically analyzed. Phylogenetic analysis revealed that the Egyptian IBVs are clustered within two distinct groups: the classic group resembling the GI-1 genotype (vaccine strains) and the variant group (field strains) of the GI-23 genotype. The variant genotype was divided into two distinct subgroups (Egy/var I and Egy/var II) resembling the Israeli variants IS/1494 and IS885 strain, respectively. Significant amino acid sequence differences between the two subgroups, especially in the epitope sites, were identified. A deletion at position 63 and an I69A/S substitution mutation associated with virus tropism were detected in the receptor-binding sites. The deduced amino acid sequence of HVRs of the variant subgroups indicated different genetic features in comparison to the classic vaccine group (H120 lineage). The Egyptian variant IBVs also contained additional N-glycosylation sites compared to the classical viruses. Recombination analysis gave evidence for distinct patterns of origin by recombination throughout the S1 gene, suggesting that the recent virus IBV-EG/1586CV-2015 emerged as a recombinant of two viruses from the variant groups Egy/var I and Egy/var II, providing another example of intra-genotypic recombination among IBVs and the first example of recombination within the GI-23 genotype. Our data suggest that both mutation and recombination may be contributing to the emergence of IBV variants. Moreover, we found that the commercially used vaccines are genotypically distant from the circulating field strains. Hence, continuous follow-up of the current vaccine strategy is highly recommended for better control and prevention of infectious bronchitis virus in the poultry sector in Egypt.

Journal

Archives of VirologySpringer Journals

Published: Sep 7, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off