The search for new powerful energetic transition metal complexes based on 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion: a DFT study

The search for new powerful energetic transition metal complexes based on... In this study, employing a new high oxygen balance energetic 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion (DNBTDO) as the bidentate ligand, NH3 and NH2NO2 as short energetic ligands, and Cu/Ni as the metal atoms, two series of novel energetic metal complexes were computationally designed. Their structures and properties were studied by density functional theory, electrostatic potential data, and molecular mechanics methods. The results showed that the designed metal complexes have high detonation performance and acceptable sensitivity: Cu/Ni(DNBTDO)(NH2NO2)2 (A3/B3) have better detonation properties and lower sensitivity than the most powerful CHNO explosive hexanitrohexaazaisowurtzitane, Cu/Ni(DNBTDO)(NH3)(NH2NO2) (A2/B2) have comparable energetic performance and sensitivity with 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, Ni(DNBTDO)(NH3)2 (B1) has comparative energy level and sensitivity with 1,3,5-trinitro-1,3,5-triazinane. These five energetic metal complexes may be attractive to energetic materials researchers. Besides, both the energetic ligands and metal atoms could have a great influence on the structures, heats of formation, detonation properties, and stability of energetic metal complexes, and the effects are coupled with each other. This study may be helpful in the search for and development of new improved energetic materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

The search for new powerful energetic transition metal complexes based on 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion: a DFT study

Loading next page...
 
/lp/springer_journal/the-search-for-new-powerful-energetic-transition-metal-complexes-based-R5dOR30bK0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-017-3425-6
Publisher site
See Article on Publisher Site

Abstract

In this study, employing a new high oxygen balance energetic 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion (DNBTDO) as the bidentate ligand, NH3 and NH2NO2 as short energetic ligands, and Cu/Ni as the metal atoms, two series of novel energetic metal complexes were computationally designed. Their structures and properties were studied by density functional theory, electrostatic potential data, and molecular mechanics methods. The results showed that the designed metal complexes have high detonation performance and acceptable sensitivity: Cu/Ni(DNBTDO)(NH2NO2)2 (A3/B3) have better detonation properties and lower sensitivity than the most powerful CHNO explosive hexanitrohexaazaisowurtzitane, Cu/Ni(DNBTDO)(NH3)(NH2NO2) (A2/B2) have comparable energetic performance and sensitivity with 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, Ni(DNBTDO)(NH3)2 (B1) has comparative energy level and sensitivity with 1,3,5-trinitro-1,3,5-triazinane. These five energetic metal complexes may be attractive to energetic materials researchers. Besides, both the energetic ligands and metal atoms could have a great influence on the structures, heats of formation, detonation properties, and stability of energetic metal complexes, and the effects are coupled with each other. This study may be helpful in the search for and development of new improved energetic materials.

Journal

Journal of Molecular ModelingSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off