The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows

The saturation of the fluorescence and its consequences for laser-induced fluorescence... The temperature dependence of the fluorescence emission of certain organic dyes such as rhodamine B has been widely utilized for measuring the temperature in liquid flows. Measurements are generally based on two assumptions: The fluorescence signal is proportional to the intensity of the laser excitation, and the temperature sensitivity of the dye is not affected by the laser irradiance. In the ratiometric methods, these assumptions allow justifying that the influence of the laser intensity can be totally eliminated in the intensity ratio of two spectral bands of the fluorescence emission and thus that measurements can be taken with no biases under experimental conditions, where the laser propagation is disturbed by the flow. However, when pulsed lasers are used (mainly in planar LIF measurements), the peak irradiance usually compares or exceeds the saturation intensity of the dyes. The present study assesses the consequences of a saturation of the dye emission on temperature measurements. Tests among fluoresceins and rhodamines reveal that the saturation can be accompanied by a significant loss of temperature sensitivity. The dyes, for which this loss of sensitivity is observed, mainly owe their temperature dependence to the fluorescence quantum yield and have a fluorescence signal decreasing with the temperature. The couple fluorescein/sulforhodamine 640 is finally proposed for an implementation of the ratiometric method, since its relatively high temperature dependence (+3 %/ $${}^\circ {\mathrm{C}}$$ ∘ C ) is not altered at high laser irradiances. The possibility of measuring instantaneous temperature fields with this pair of dyes using a single laser shot is finally demonstrated on a turbulent heated jet injected into quiescent water. Experiments in Fluids Springer Journals

The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial