The safe carbon budget

The safe carbon budget Cumulative emissions drive peak global warming and determine the carbon budget needed to keep temperature below 2 or 1.5 °C. This safe carbon budget is low if uncertainty about the transient climate response is high and risk tolerance (willingness to accept risk of overshooting the temperature target) is low. Together with energy costs, this budget determines the optimal carbon price and how quickly fossil fuel is abated and replaced by renewable energy. This price is the sum of the present discounted value of all future losses in aggregate production due to emitting one ton of carbon today plus the cost of peak warming that rises over time to reflect the increasing scarcity of carbon as temperature approaches its upper limit. If policy makers ignore production losses, the carbon price rises more rapidly. If they ignore the peak temperature constraint, the carbon price rises less rapidly. The alternative of adjusting damages upwards to factor in the peak warming constraint leads initially to a higher carbon price which rises less rapidly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Climatic Change Springer Journals

The safe carbon budget

Loading next page...
 
/lp/springer_journal/the-safe-carbon-budget-sLrLJHPBVx
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by The Author(s)
Subject
Earth Sciences; Atmospheric Sciences; Climate Change/Climate Change Impacts
ISSN
0165-0009
eISSN
1573-1480
D.O.I.
10.1007/s10584-017-2132-8
Publisher site
See Article on Publisher Site

Abstract

Cumulative emissions drive peak global warming and determine the carbon budget needed to keep temperature below 2 or 1.5 °C. This safe carbon budget is low if uncertainty about the transient climate response is high and risk tolerance (willingness to accept risk of overshooting the temperature target) is low. Together with energy costs, this budget determines the optimal carbon price and how quickly fossil fuel is abated and replaced by renewable energy. This price is the sum of the present discounted value of all future losses in aggregate production due to emitting one ton of carbon today plus the cost of peak warming that rises over time to reflect the increasing scarcity of carbon as temperature approaches its upper limit. If policy makers ignore production losses, the carbon price rises more rapidly. If they ignore the peak temperature constraint, the carbon price rises less rapidly. The alternative of adjusting damages upwards to factor in the peak warming constraint leads initially to a higher carbon price which rises less rapidly.

Journal

Climatic ChangeSpringer Journals

Published: Jan 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off