The Rop GTPase: an emerging signaling switch in plants

The Rop GTPase: an emerging signaling switch in plants G proteins are ubiquitous molecular switches in eukaryotic signal transduction, but their roles in plant signal transduction had not been clearly established until recent studies of the plant-specific Rop subfamily of RHO GTPases. Rop participates in signaling to an array of physiological processes including cell polarity establishment, cell growth, morphogenesis, actin dynamics, H2O2 generation, hormone responses, and probably many other cellular processes in plants. Evidence suggests that plants have developed unique molecular mechanisms to control this universal molecular switch through novel GTPase-activating proteins and potentially through a predominant class of plant receptor-like serine/threonine kinases. Furthermore, the mechanism by which Rop regulates specific processes may also be distinct from that for other GTPases. These advances have raised the exciting possibility that the elucidation of Rop GTPase signaling may lead to the establishment of a new paradigm for G protein-dependent signal transduction in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The Rop GTPase: an emerging signaling switch in plants

Loading next page...
 
/lp/springer_journal/the-rop-gtpase-an-emerging-signaling-switch-in-plants-teVzxQPrJs
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006402628948
Publisher site
See Article on Publisher Site

Abstract

G proteins are ubiquitous molecular switches in eukaryotic signal transduction, but their roles in plant signal transduction had not been clearly established until recent studies of the plant-specific Rop subfamily of RHO GTPases. Rop participates in signaling to an array of physiological processes including cell polarity establishment, cell growth, morphogenesis, actin dynamics, H2O2 generation, hormone responses, and probably many other cellular processes in plants. Evidence suggests that plants have developed unique molecular mechanisms to control this universal molecular switch through novel GTPase-activating proteins and potentially through a predominant class of plant receptor-like serine/threonine kinases. Furthermore, the mechanism by which Rop regulates specific processes may also be distinct from that for other GTPases. These advances have raised the exciting possibility that the elucidation of Rop GTPase signaling may lead to the establishment of a new paradigm for G protein-dependent signal transduction in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off