The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress responses

The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress... Genetic and physiological studies have revealed evidences for multiple signaling pathways by which the plastid exerts retrograde control over photosynthesis-associated-nuclear-genes. In this study we have examined the mechanisms of control of transcription by plastid signals, focusing on transcription factors. We have also further addressed the physical nature of plastid signals and the physiological role, in stress acclimation of this regulatory pathway. ABI4, a master Apetala 2 (AP2)-type transcription factor (TF), is targeted by multiple signalling pathways in plant cells, such as abscisic acid (ABA) signals, sugar signals and plastid signals derived from reactive oxygen species (ROS) and chlorophyll intermediates. ABI4 binds the promoter of target genes to prevent their transcription by competing with other competitive TFs. However, we found that once ABI4 bound the element (CCACGT), it may not be bound by other TFs, therefore making the signalling long-lasting. Downstream of ABI4, CBFA (CCAAT binding factor A) is a subunit of the HAP2/HAP3/HAP5 (Heme activator protein) trimeric transcription complex. CBFA however is a redundant HAP3 subunit. When emergency occurs (such as herbicide treatments or environmental stresses followed by ABA and ROS accumulation), the master transcription factor ABI4 down-regulates some TFs, like CBFA, and then some other TF subunits enter the transcription complex and transcriptional efficiency of stress-responsive genes (including the transcription co-factor CBP) is improved instantaneously. abi4, cbfA and cbp mutants showed weaker drought-tolerance after a herbicide norflurazon treatment, which indicated the physiological role of these key transcription factors. Plant Molecular Biology Springer Journals

The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress responses

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial