The Roles of Tight Junctions and Claudin-1 in the Microbubble-Mediated Ultrasound-Induced Enhancement of Drug Concentrations in Rat Prostate

The Roles of Tight Junctions and Claudin-1 in the Microbubble-Mediated Ultrasound-Induced... Although microbubble-mediated ultrasound irradiation can enhance the prostate permeability, little is known about the mechanism. In our study, the healthy, adult male SD rats were divided into four groups: the BC, US, MB, and MMUS groups. A therapeutic ultrasound apparatus was used to treat the rats prostates in the presence of circulating MBs. Cefuroxime was injected to assess prostate permeability by HPLC. The structures of prostate tissues and TJs were observed by light and transmission electron microscopy. Western blot was used to assess claudin-1 expression. After treatment of microbubble-mediated ultrasound irradiation, the cefuroxime concentrations in the prostate were significantly increased. HE staining demonstrated that the gland epithelial cell layer became dropsical, thick, and disordered. In transmission electron microscopy, the TJs between adjacent capillary endothelial cells or gland epithelial cells were disjointed and partly interrupted. Furthermore, western blot showed the expression of claudin-1 was significantly decreased. However, these findings were not observed in the prostates exposed to microbubble or ultrasound alone, as well as the healthy control rats. In conclusion, microbubble-mediated ultrasound irradiation significantly enhanced the prostate permeability and improve the cefuroxime concentrations in prostate. The changes in TJs structure and the decreased claudin-1 expression may play important roles in this process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Roles of Tight Junctions and Claudin-1 in the Microbubble-Mediated Ultrasound-Induced Enhancement of Drug Concentrations in Rat Prostate

Loading next page...
 
/lp/springer_journal/the-roles-of-tight-junctions-and-claudin-1-in-the-microbubble-mediated-5MP9Y0Q0ZP
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9834-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial