The Roles of the NANA and LEPIDA Genes in Regulating the Stem Growth in Arabidopsis thaliana

The Roles of the NANA and LEPIDA Genes in Regulating the Stem Growth in Arabidopsis thaliana Genetic, physiological, and morphological studies of dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the collection of the Department of Genetics and Breeding, Moscow State University, showed that the NA and LE genes are involved in regulating elongation of internode cells and sensitivity to various hormones. The na mutation suppressed stem growth only in the presence of the active LE gene. The absence of the LE activity (in the lele homozygote) restored stem growth of the na mutant to the level characteristic of thele-2 mutant, and a decrease inLE activity (in LE/le heterozygote) almost completely suppressed the na phenotype. Phenotypic analysis of homozygous double mutants and heterozygotes obtained by crossing the na and le-2 mutants showed that the recessive le-2 allele has an epistatic effect on the semidominant na allele and that the genes possibly control consecutive steps of one biochemical pathway or one morphogenetic process. A hypothetical scheme was proposed for the interaction of the NA and LE gene products. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The Roles of the NANA and LEPIDA Genes in Regulating the Stem Growth in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/the-roles-of-the-nana-and-lepida-genes-in-regulating-the-stem-growth-Ye12AcvCkW
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000036526.13587.a6
Publisher site
See Article on Publisher Site

Abstract

Genetic, physiological, and morphological studies of dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the collection of the Department of Genetics and Breeding, Moscow State University, showed that the NA and LE genes are involved in regulating elongation of internode cells and sensitivity to various hormones. The na mutation suppressed stem growth only in the presence of the active LE gene. The absence of the LE activity (in the lele homozygote) restored stem growth of the na mutant to the level characteristic of thele-2 mutant, and a decrease inLE activity (in LE/le heterozygote) almost completely suppressed the na phenotype. Phenotypic analysis of homozygous double mutants and heterozygotes obtained by crossing the na and le-2 mutants showed that the recessive le-2 allele has an epistatic effect on the semidominant na allele and that the genes possibly control consecutive steps of one biochemical pathway or one morphogenetic process. A hypothetical scheme was proposed for the interaction of the NA and LE gene products.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off