The Role of Yeast VDAC Genes on the Permeability of the Mitochondrial Outer Membrane

The Role of Yeast VDAC Genes on the Permeability of the Mitochondrial Outer Membrane In addition to the POR1 gene, which encodes the well-characterized voltage dependent anion-selective channel (YVDAC1) of the mitochondrial outer membrane, the yeast Saccharomyces cerevisiae contains a second gene (POR2) encoding a protein (YVDAC2) with 50% sequence identity to YVDAC1. Mitochondria isolated from yeast cells deleted for the POR1 gene (Δpor1) had a profoundly reduced outer membrane permeability as measured by the ability of an intermembrane space dehydrogenase to oxidize exogenously added NADH. Mitochondria missing either YVDAC1 or both YVDAC1 and YVDAC2 showed a 2-fold increase in the rate of NADH oxidation when the outer membrane was deliberately damaged. Mitochondria from parental cells showed only a 10% increase indicating that the outer membrane is highly permeable to NADH. In the absence of YVDAC1, we calculate that the outer membrane permeability to NADH is reduced 20-fold. The low NADH permeability in the presence of YVDAC2 was not due to the low levels of YVDAC2 expression as mitochondria from cells expressing levels of YVDAC2 comparable to those of YVDAC1 in parental cells showed no substantial increase in NADH permeability, indicating a minimal role of YVDAC2 in this permeability. The residual permeability may be due to other pathways because cells missing both genes can still grow on nonfermentable carbon sources. However, YVDAC1 is clearly the major pathway for NADH flux through the outer membrane in these mitochondria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Role of Yeast VDAC Genes on the Permeability of the Mitochondrial Outer Membrane

Loading next page...
 
/lp/springer_journal/the-role-of-yeast-vdac-genes-on-the-permeability-of-the-mitochondrial-wnfYvIRV1V
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900324
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial