The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in vitro and in vivo

The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in... The N-terminal caspase cleavage in the nucleoprotein (NP) of influenza A virus is correlated with the host origin of the virus, thus could be a molecular determinant for host range. We studied how mutations targeting the NP cleavage motif of human and avian influenza viruses affect virus replication in vitro and in vivo. The “avian-like” D 16 →G substitution in the NP, which makes this protein resistant to cleavage, did not significantly affect the human A/Puerto Rico/8/34 (H1N1) virus replication in vitro but decreased the lethality of this virus in mice by 68-fold. Gene incompatibility contributed to the attenuated phenotype of the reassortant A/Puerto Rico/8/34 virus with avian NP derived from A/Teal/Hong Kong/w312/97 (H6N1) virus in vitro and in vivo. Insertion of the “human-like” G 16 →D mutation into avian NP, which resulted in susceptibility to caspase cleavage, did not rescue virulence, but made the reassortant virus even more attenuated. Introducing the human-like G 16 →D substitution into the NP of highly pathogenic A/Vietnam/1203/04 (H5N1) virus decreased lethality in mice. We confirmed that position 16, which associated with the N-terminal caspase cleavage of the NP, is important for optimal virus fitness in vitro and in vivo. An avian-like mutation at position 16 in the NP of human virus as well as a human-like substitution at this residue in avian NP both resulted in virus attenuation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in vitro and in vivo

Loading next page...
 
/lp/springer_journal/the-role-of-the-n-terminal-caspase-cleavage-site-in-the-nucleoprotein-5HlIMSVgHW
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-007-0003-8
Publisher site
See Article on Publisher Site

Abstract

The N-terminal caspase cleavage in the nucleoprotein (NP) of influenza A virus is correlated with the host origin of the virus, thus could be a molecular determinant for host range. We studied how mutations targeting the NP cleavage motif of human and avian influenza viruses affect virus replication in vitro and in vivo. The “avian-like” D 16 →G substitution in the NP, which makes this protein resistant to cleavage, did not significantly affect the human A/Puerto Rico/8/34 (H1N1) virus replication in vitro but decreased the lethality of this virus in mice by 68-fold. Gene incompatibility contributed to the attenuated phenotype of the reassortant A/Puerto Rico/8/34 virus with avian NP derived from A/Teal/Hong Kong/w312/97 (H6N1) virus in vitro and in vivo. Insertion of the “human-like” G 16 →D mutation into avian NP, which resulted in susceptibility to caspase cleavage, did not rescue virulence, but made the reassortant virus even more attenuated. Introducing the human-like G 16 →D substitution into the NP of highly pathogenic A/Vietnam/1203/04 (H5N1) virus decreased lethality in mice. We confirmed that position 16, which associated with the N-terminal caspase cleavage of the NP, is important for optimal virus fitness in vitro and in vivo. An avian-like mutation at position 16 in the NP of human virus as well as a human-like substitution at this residue in avian NP both resulted in virus attenuation.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off