The role of the MCM2-7 helicase complex during Arabidopsis seed development

The role of the MCM2-7 helicase complex during Arabidopsis seed development The MINICHROMOSOME MAINTENANCE 2-7 (MCM2-7) complex, a ring-shaped heterohexamer, unwinds the DNA double helix ahead of the other replication machinery. Although there is evidence that individual components might have other roles, the essential nature of the MCM2-7 complex in DNA replication has made it difficult to uncover these. Here, we present a detailed analysis of Arabidopsis thaliana mcm2-7 mutants and reveal phenotypic differences. The MCM2-7 genes are coordinately expressed during development, although MCM7 is expressed at a higher level in the egg cell. Consistent with a role in the egg cell, heterozygous mcm7 mutants resulted in frequent ovule abortion, a phenotype that does not occur in other mcm mutants. All mutants showed a maternal effect, whereby seeds inheriting a maternal mutant allele occasionally aborted later in seed development with defects in embryo patterning, endosperm nuclear size, and cellularization, a phenotype that is variable between subunit mutants. We provide evidence that this maternal effect is due to the necessity of a maternal store of MCM protein in the central cell that is sufficient for maintaining seed viability and size in the absence of de novo MCM transcription. Reducing MCM levels using endosperm-specific RNAi constructs resulted in the up-regulation of DNA repair transcripts, consistent with the current hypothesis that excess MCM2-7 complexes are loaded during G1 phase, and are required during S phase to overcome replicative stress or DNA damage. Overall, this study demonstrates the importance of the MCM2-7 subunits during seed development and suggests that there are functional differences between the subunits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The role of the MCM2-7 helicase complex during Arabidopsis seed development

Loading next page...
 
/lp/springer_journal/the-role-of-the-mcm2-7-helicase-complex-during-arabidopsis-seed-sOCyHoP0tx
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0213-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial