The role of the functional sites of the merlin tumor suppressor in Drosophila Spermatogenesis

The role of the functional sites of the merlin tumor suppressor in Drosophila Spermatogenesis The Merlin gene of Drosophila is homologous to the human Neurofibromatosis 2 (NF2) gene, an important regulator of proliferation and endocytosis of cell receptors. It was earlier shown that the Thr559 residue of the Drosophila Merlin protein was homologous to Ser518 of the human protein (which was already known to undergo phosphorylation); hence, it was assumed that Thr559 of Drosophila also was a substrate of phosphorylation. The mutant Merlin proteins MerT559D (an analog of the phosphorylated form) and MerT559A (a nonphosphorylated form) were constructed and tested, under the conditions of ectopic expression, for the ability to correct the spermatogenesis defects induced by the Mer4 mutation. The mutant form MerT559D was demonstrated to restore the abnormal nebenkern phenotype induced by this mutation, whereas the MerT559A substituted form did not restore this phenotype. Ectopic expression o the wild-type Merlin protein, MerT559A mutant form, and mycMer345–635 truncated protein in a normal genotype resulted in the abnormal nebenkern phenotype, whereas this phenotype was not observed in the case of ectopic expression of the MerT559D analog of the phosphorylated form. Ectopic expression of the mycMer3, mycMerΔBB, and mycMer1–379 truncate variants led to disturbance of meiotic cytokinesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The role of the functional sites of the merlin tumor suppressor in Drosophila Spermatogenesis

Loading next page...
 
/lp/springer_journal/the-role-of-the-functional-sites-of-the-merlin-tumor-suppressor-in-cZXt0CYm4r
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410100182
Publisher site
See Article on Publisher Site

Abstract

The Merlin gene of Drosophila is homologous to the human Neurofibromatosis 2 (NF2) gene, an important regulator of proliferation and endocytosis of cell receptors. It was earlier shown that the Thr559 residue of the Drosophila Merlin protein was homologous to Ser518 of the human protein (which was already known to undergo phosphorylation); hence, it was assumed that Thr559 of Drosophila also was a substrate of phosphorylation. The mutant Merlin proteins MerT559D (an analog of the phosphorylated form) and MerT559A (a nonphosphorylated form) were constructed and tested, under the conditions of ectopic expression, for the ability to correct the spermatogenesis defects induced by the Mer4 mutation. The mutant form MerT559D was demonstrated to restore the abnormal nebenkern phenotype induced by this mutation, whereas the MerT559A substituted form did not restore this phenotype. Ectopic expression o the wild-type Merlin protein, MerT559A mutant form, and mycMer345–635 truncated protein in a normal genotype resulted in the abnormal nebenkern phenotype, whereas this phenotype was not observed in the case of ectopic expression of the MerT559D analog of the phosphorylated form. Ectopic expression of the mycMer3, mycMerΔBB, and mycMer1–379 truncate variants led to disturbance of meiotic cytokinesis.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off