The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products

The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified... Interactions of trace organic compounds (TOrCs) with polymeric nanofiltration (NF) membrane can affect their rejection. It is desirable to investigate whether solubility which depends on the free energy of interaction between these solutes and water correlates with rejection/adsorption and the potential to be incorporated in the partitioning terms of current NF model. A total of ten neutral disinfection by-products (DBPs) were selected as the model compounds for TOrCs to comprehensively investigate the role of solubility on rejection and adsorption. Pearson correlation analysis indicated that the correlation between MW and rejection ratio was highly significant (r = 0.778, p = 0.008) and that between solubility and rejection ratio was moderately significant (r = −0.636, p = 0.48) in a cross-flow system. By fitting Freundlich equation from adsorption isotherm experiment, the adsorption affinity (K f) of DBPs was roughly correlated with their solubility with regard to the comparison of n value with 1. α was then introduced as a parameter of solute-membrane interaction from the perspective of partitioning term in the hydrodynamic model. Exponential relationship can be observed between the solubility and α, demonstrating the possibility of incorporating solubility into the partitioning terms in NF model to accurately predict the rejection of DBPs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products

Loading next page...
 
/lp/springer_journal/the-role-of-solubility-on-the-rejection-of-trace-organics-by-aoqtndJkMB
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9282-0
Publisher site
See Article on Publisher Site

Abstract

Interactions of trace organic compounds (TOrCs) with polymeric nanofiltration (NF) membrane can affect their rejection. It is desirable to investigate whether solubility which depends on the free energy of interaction between these solutes and water correlates with rejection/adsorption and the potential to be incorporated in the partitioning terms of current NF model. A total of ten neutral disinfection by-products (DBPs) were selected as the model compounds for TOrCs to comprehensively investigate the role of solubility on rejection and adsorption. Pearson correlation analysis indicated that the correlation between MW and rejection ratio was highly significant (r = 0.778, p = 0.008) and that between solubility and rejection ratio was moderately significant (r = −0.636, p = 0.48) in a cross-flow system. By fitting Freundlich equation from adsorption isotherm experiment, the adsorption affinity (K f) of DBPs was roughly correlated with their solubility with regard to the comparison of n value with 1. α was then introduced as a parameter of solute-membrane interaction from the perspective of partitioning term in the hydrodynamic model. Exponential relationship can be observed between the solubility and α, demonstrating the possibility of incorporating solubility into the partitioning terms in NF model to accurately predict the rejection of DBPs.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off