The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte Sesuvium portulacastrum

The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte... An experiment was conducted to understand the role of rhizospheric microorganisms in salinity effects on growth, antioxidants, pigments, and ion concentrations in the halophyte Sesuvium portulacastrum L. The plants grown in nonsterilized soil exhibited the enhanced growth rate, suppressed antioxidant enzymes, increased contents of chlorophylls and carotenoids, the greater accumulation of sodium and the reduction in the potassium ion concentration, as compared with the plants grown in microbe-free soil. The dominant microbes identified from the rhizophere soil of nonsterilized plant groups included Bacillus cereus, Aeromonas hydrophila, Pseudomonas aeruginosa, Corynebacterium xerosis, and Escherichia coli. The work emphasizes the importance of the rhizobacteria that colonize the root at the interface with soil in preventing the deleterious effects caused by salinity through accumulation of sodium and pigments and reduction of antioxidants and potassium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte Sesuvium portulacastrum

Loading next page...
 
/lp/springer_journal/the-role-of-rhizobacteria-in-salinity-effects-on-biochemical-vv32O0ORHo
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712010025
Publisher site
See Article on Publisher Site

Abstract

An experiment was conducted to understand the role of rhizospheric microorganisms in salinity effects on growth, antioxidants, pigments, and ion concentrations in the halophyte Sesuvium portulacastrum L. The plants grown in nonsterilized soil exhibited the enhanced growth rate, suppressed antioxidant enzymes, increased contents of chlorophylls and carotenoids, the greater accumulation of sodium and the reduction in the potassium ion concentration, as compared with the plants grown in microbe-free soil. The dominant microbes identified from the rhizophere soil of nonsterilized plant groups included Bacillus cereus, Aeromonas hydrophila, Pseudomonas aeruginosa, Corynebacterium xerosis, and Escherichia coli. The work emphasizes the importance of the rhizobacteria that colonize the root at the interface with soil in preventing the deleterious effects caused by salinity through accumulation of sodium and pigments and reduction of antioxidants and potassium.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 23, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off