The role of recombinational repair proteins in mating type switching in fission yeast cells

The role of recombinational repair proteins in mating type switching in fission yeast cells DNA double-strand breaks (DSBs) occur after exposing cells to ionizing radiation or under the action of various antitumor antibiotics. They can be also generated in the course cell processes, such as meiosis and mating type switching in yeast. The most preferential mechanism for the correction of DNA DSB in yeasts is recombinational repair controlled by RAD52 group genes. The role of recombinational repair in mating type switching of fission yeast cells was examined on the example of genes of this group, rhp51 + and rhp55 +. We constructed homothallic strains of genotypes h 90 rhp51 and h 90 rhp55, and found that mutant cells yielded colonies with the mottled phenotype. In addition, h 90 cells with deletions in these genes were shown to segregate heterothallic iodine-negative colonies h − and h +. The genome region, responsible for the switching process in these segregants, was analyzed by DNA hybridization. As shown in this analysis, h + segregants had the h +N or h 90 configuration of the mat region, whereas h −, the h 90 configuration. Segregants h +N contained DNA duplication in the mat region. DNA rearrangements were not detected at the mating type locus, but the level of DNA DSB formation was drastically decreased in these segregants. Thus, our results show that genes rhp51 + and rhp55 + are involved not only in the repair of induced DNA DSB, but also in the mechanism of mating type switching in fission yeast. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The role of recombinational repair proteins in mating type switching in fission yeast cells

Loading next page...
 
/lp/springer_journal/the-role-of-recombinational-repair-proteins-in-mating-type-switching-gJEeElIMG2
Publisher
Springer Journals
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406040041
Publisher site
See Article on Publisher Site

Abstract

DNA double-strand breaks (DSBs) occur after exposing cells to ionizing radiation or under the action of various antitumor antibiotics. They can be also generated in the course cell processes, such as meiosis and mating type switching in yeast. The most preferential mechanism for the correction of DNA DSB in yeasts is recombinational repair controlled by RAD52 group genes. The role of recombinational repair in mating type switching of fission yeast cells was examined on the example of genes of this group, rhp51 + and rhp55 +. We constructed homothallic strains of genotypes h 90 rhp51 and h 90 rhp55, and found that mutant cells yielded colonies with the mottled phenotype. In addition, h 90 cells with deletions in these genes were shown to segregate heterothallic iodine-negative colonies h − and h +. The genome region, responsible for the switching process in these segregants, was analyzed by DNA hybridization. As shown in this analysis, h + segregants had the h +N or h 90 configuration of the mat region, whereas h −, the h 90 configuration. Segregants h +N contained DNA duplication in the mat region. DNA rearrangements were not detected at the mating type locus, but the level of DNA DSB formation was drastically decreased in these segregants. Thus, our results show that genes rhp51 + and rhp55 + are involved not only in the repair of induced DNA DSB, but also in the mechanism of mating type switching in fission yeast.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Apr 19, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off