The Role of Peripheral Myelin Protein 2 in Remyelination

The Role of Peripheral Myelin Protein 2 in Remyelination The protein component of the myelin layer is essential for all aspects of peripheral nerves, and its deficiency can lead to structural and functional impairment. The presence of peripheral myelin protein 2 (P2, PMP2, FABP8, M-FABP) in Schwann cells has been known for decades and shown recently to be involved in the lipid homeostasis in the peripheral neural system. However, its precise role during de- and remyelination has yet to be elucidated. To this end, we assessed remyelination after sciatic nerve crush injury in vivo, and in an experimental de/remyelination ex vivo myelinating culture model in P2-deficient (P2 −/− ) and wild-type (WT) animals. In vivo, the nerve crush paradigm revealed temporal structural and functional changes in P2 −/− mice as compared to WT animals. Concomitantly, P2 −/− DRG cultures demonstrated the presence of shorter internodes and enlarged nodes after ex vivo de/remyelination. Together, these data indicate that P2 may play a role in remyelination of the injured peripheral nervous system, presumably by affecting the nodal and internodal configuration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Neurobiology Springer Journals

Loading next page...
 
/lp/springer_journal/the-role-of-peripheral-myelin-protein-2-in-remyelination-sSugsQyLGs
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Cell Biology; Neurobiology
ISSN
0272-4340
eISSN
1573-6830
D.O.I.
10.1007/s10571-017-0494-0
Publisher site
See Article on Publisher Site

Abstract

The protein component of the myelin layer is essential for all aspects of peripheral nerves, and its deficiency can lead to structural and functional impairment. The presence of peripheral myelin protein 2 (P2, PMP2, FABP8, M-FABP) in Schwann cells has been known for decades and shown recently to be involved in the lipid homeostasis in the peripheral neural system. However, its precise role during de- and remyelination has yet to be elucidated. To this end, we assessed remyelination after sciatic nerve crush injury in vivo, and in an experimental de/remyelination ex vivo myelinating culture model in P2-deficient (P2 −/− ) and wild-type (WT) animals. In vivo, the nerve crush paradigm revealed temporal structural and functional changes in P2 −/− mice as compared to WT animals. Concomitantly, P2 −/− DRG cultures demonstrated the presence of shorter internodes and enlarged nodes after ex vivo de/remyelination. Together, these data indicate that P2 may play a role in remyelination of the injured peripheral nervous system, presumably by affecting the nodal and internodal configuration.

Journal

Cellular and Molecular NeurobiologySpringer Journals

Published: Apr 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off