The Role of MIP in Lens Fiber Cell Membrane Transport

The Role of MIP in Lens Fiber Cell Membrane Transport MIP has been hypothesized to be a gap junction protein, a membrane ion channel, a membrane water channel and a facilitator of glycerol transport and metabolism. These possible roles have been indirectly suggested by the localization of MIP in lens gap junctional plaques and the properties of MIP when reconstituted into artificial membranes or exogenously expressed in oocytes. We have examined lens fiber cells to see if these functions are present and whether they are affected by a mutation of MIP found in Cat Fr mouse lens. Of these five hypothesized functions, only one, the role of water channel, appears to be true of fiber cells in situ. Based on the rate of volume change of vesicles placed in a hypertonic solution, fiber cell membrane lipids have a low water permeability (p H2O ) on the order of 1 μm/sec whereas normal fiber cell membrane p H2O was 17 μm/sec frog, 32 μm/sec rabbit and 43 μm/sec mouse. Cat Fr mouse lens fiber cell p H2O was reduced by 13 μm/sec for heterozygous and 30 μm/sec for homozygous mutants when compared to wild type. Lastly, when expressed in oocytes, the p H2O conferred by MIP is not sensitive to Hg2+ whereas that of CHIP28 (AQP1) is blocked by Hg2+. The fiber cell membrane p H2O was also not sensitive to Hg2+ whereas lens epithelial cell p H2O (136 μm/sec in rabbit) was blocked by Hg2+. With regard to the other hypothesized roles, fiber cell membrane or lipid vesicles had a glycerol permeability on the order of 1 nm/sec, an order of magnitude less than that conferred by MIP when expressed in oocytes. Impedance studies were employed to determine gap junctional coupling and fiber cell membrane conductance in wild-type and heterozygous Cat Fr mouse lenses. There was no detectable difference in either coupling or conductance between the wild-type and the mutant lenses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Role of MIP in Lens Fiber Cell Membrane Transport

Loading next page...
 
/lp/springer_journal/the-role-of-mip-in-lens-fiber-cell-membrane-transport-2gPcpjvuF8
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900549
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial