The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream

The role of macrophyte structural complexity and water flow velocity in determining the epiphytic... Habitat structural complexity provided by aquatic macrophytes in lowland streams affects the associated epiphytic macroinvertebrate assemblages in both direct (increased microhabitat diversity, refuge against predation) and indirect ways (e.g. current attenuation by physical structures). In a correlative field study carried out in two different years in a Belgian stream, we investigated the effects of the factors macrophyte identity, macrophyte complexity (represented as fractal complexity) and current velocity on the composition of the macroinvertebrate community associated with monospecific macrophyte patches, consisting of plants with differing structural complexity; Sparganium emersum Rehmann (least complex), Potamogeton natans L. (intermediate) and Callitriche obtusangula Le Gall (most complex). In addition to significantly lower within-patch current velocity being observed, vegetation stands consisting of complex macrophytes also harboured significantly richer macroinvertebrate communities than stands of simpler macrophytes. A significant part of the variation in the macroinvertebrate community composition could be explained by plant identity, macrophyte complexity and current velocity. However, it was not possible to determine the relative importance of these three factors, because of their high degree of intercorrelation. Additionally, the explanatory power of these factors was higher under conditions of high current velocity, suggesting a role of macrophyte patches as instream flow refugia for macroinvertebrates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream

Loading next page...
 
/lp/springer_journal/the-role-of-macrophyte-structural-complexity-and-water-flow-velocity-KevP0bSc5N
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1007/s10750-017-3353-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial