The role of low intensity red luminescent radiation in the control of Arabidopsis thaliana morphogenesis and hormonal balance

The role of low intensity red luminescent radiation in the control of Arabidopsis thaliana... The effects of low intensity red luminescent radiation emitted by the polyethylene light-correcting film due to the conversion of UV-A radiation on Arabidopsis thaliana (L.) Heynh. morphogenesis and hormonal balance were studied. Wild-type Ler plants and two mutants, hy3 and hy4, displaying disturbances in the synthesis of phytochrome B and cryptochrome 1, respectively, were compared. In wild-type and hy4 plants grown under the light-correcting film, growth and development were substantially accelerated, whereas, in hy3 plants, they were retarded. These changes were correlated with changes in the levels of endogenous hormones, both growth activators and inhibitors. We concluded that low intensity red luminescent radiation affected the plant hormonal balance. In its turn, the changes in the hormone ratios, growth stimulators and inhibitors, affected the rate of plant growth and their productivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The role of low intensity red luminescent radiation in the control of Arabidopsis thaliana morphogenesis and hormonal balance

Loading next page...
 
/lp/springer_journal/the-role-of-low-intensity-red-luminescent-radiation-in-the-control-of-li1GtX1WwQ
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706060069
Publisher site
See Article on Publisher Site

Abstract

The effects of low intensity red luminescent radiation emitted by the polyethylene light-correcting film due to the conversion of UV-A radiation on Arabidopsis thaliana (L.) Heynh. morphogenesis and hormonal balance were studied. Wild-type Ler plants and two mutants, hy3 and hy4, displaying disturbances in the synthesis of phytochrome B and cryptochrome 1, respectively, were compared. In wild-type and hy4 plants grown under the light-correcting film, growth and development were substantially accelerated, whereas, in hy3 plants, they were retarded. These changes were correlated with changes in the levels of endogenous hormones, both growth activators and inhibitors. We concluded that low intensity red luminescent radiation affected the plant hormonal balance. In its turn, the changes in the hormone ratios, growth stimulators and inhibitors, affected the rate of plant growth and their productivity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 26, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off