The role of excited state molecular association in photoreactions of dibenzoylmethanatoboron difluoride with conjugated enones and en-esters: An anomalous excimer reaction

The role of excited state molecular association in photoreactions of dibenzoylmethanatoboron... The singlet excited state of the title borofluoride, *DBMBF2, reacted efficiently with acyclic enones and en-esters but only feebly with the corresponding excimer in analogy to simple acyclic olefins to give cycloaddition products, in spite of substantially different electronic character of the double bonds. Cyclic enones, on the contrary, reacted with both *DBMBF2 and the excimer with increasing fluorescence quenching constants and adduct quantum yields as the rigidity of enone rings relaxes. They interacted with the excimer to cause the enone stimulated excimer dissociation which occurred most likely by the intermediary of the enone exciplexes. The interaction of 2-cyclopentenone (CP) by this process caused strong increases in *DBMBF2 fluorescence intensity, that was interpreted to arise from a fast reverse step (kx) from the exciplex as shown by increasing *DBMBF2 fluorescence intensities upon addition of CP. Apparently the exciplexes from 2-cyclohexenone, 2-cyclootenone and 2-cyclododecenone had a decreasing degree of reversibility (i.e., relatively smaller reverse reaction rates): this trend caused Φa increases and, correspondingly, lesser enhancement of *DBMBF2 fluorescence in the same order. The last enone, while mainly reacted with excimer, showed almost the same reactivity and Φa pattern of acyclic enones. In contrast to cyclic olefins, the last three enones reacted to show decreased Φa on increasing initial [DBMBF2] (i.e., higher excimer concentrations); and hidden deactivation step was implicated in the excimer reaction with these enones. The anomalous reaction patterns were assumed to be caused by differences in the geometrical orientation of an enone within exciplexes and of enone attack on the excimer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The role of excited state molecular association in photoreactions of dibenzoylmethanatoboron difluoride with conjugated enones and en-esters: An anomalous excimer reaction

Loading next page...
 
/lp/springer_journal/the-role-of-excited-state-molecular-association-in-photoreactions-of-BvQ4v0YVfw
Publisher
Springer Netherlands
Copyright
Copyright © 2000 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856700X00589
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial