The Role of Electrophoresis in Gene Electrotransfer

The Role of Electrophoresis in Gene Electrotransfer Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase the permeability of a cell membrane and enables transfer of genes. Poor plasmid mobility in tissues is one of the major barriers for the successful use of gene electrotransfer in gene therapy. Therefore, we analyzed the effect of electrophoresis on increasing gene electrotransfer efficiency using different combinations of high-voltage (HV) and low-voltage (LV) pulses in vitro on CHO cells. We designed a special prototype of electroporator, which enabled us to use only HV pulses or combinations of LV + HV and HV + LV pulses. We used optimal plasmid concentrations used in in vitro conditions as well as lower suboptimal concentrations in order to mimic in vivo conditions. Only for the lowest plasmid concentration did the electrophoretic force of the LV pulse added to the HV pulse increase the transfection efficiency compared to using only HV. The effect of the LV pulse was more pronounced for HV + LV, while for the reversed sequence, LV + HV, there was only a minor effect of the LV pulse. For the highest plasmid concentrations no added effect of LV pulses were observed. Our results suggest that there are different contributing effects of LV pulses: electrophoretically increased contact of DNA with the membrane and increased insertion of DNA into permeabilized cell membrane and/or translocation due to electrophoretic force, which appears to be the dominant effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Role of Electrophoresis in Gene Electrotransfer

Loading next page...
 
/lp/springer_journal/the-role-of-electrophoresis-in-gene-electrotransfer-vLTQQ2ffXS
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9276-z
Publisher site
See Article on Publisher Site

Abstract

Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase the permeability of a cell membrane and enables transfer of genes. Poor plasmid mobility in tissues is one of the major barriers for the successful use of gene electrotransfer in gene therapy. Therefore, we analyzed the effect of electrophoresis on increasing gene electrotransfer efficiency using different combinations of high-voltage (HV) and low-voltage (LV) pulses in vitro on CHO cells. We designed a special prototype of electroporator, which enabled us to use only HV pulses or combinations of LV + HV and HV + LV pulses. We used optimal plasmid concentrations used in in vitro conditions as well as lower suboptimal concentrations in order to mimic in vivo conditions. Only for the lowest plasmid concentration did the electrophoretic force of the LV pulse added to the HV pulse increase the transfection efficiency compared to using only HV. The effect of the LV pulse was more pronounced for HV + LV, while for the reversed sequence, LV + HV, there was only a minor effect of the LV pulse. For the highest plasmid concentrations no added effect of LV pulses were observed. Our results suggest that there are different contributing effects of LV pulses: electrophoretically increased contact of DNA with the membrane and increased insertion of DNA into permeabilized cell membrane and/or translocation due to electrophoretic force, which appears to be the dominant effect.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 18, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off