The Role of Cryptochrome 1 and Phytochromes in the Control of Plant Photomorphogenetic Responses to Green Light

The Role of Cryptochrome 1 and Phytochromes in the Control of Plant Photomorphogenetic Responses... We studied the role of cryptochrome 1 (CRY1) and phytochromes in the photomorphogenetic responses of plants to the middle-wavelength region of photosynthetically active radiation. A comparison was performed of green light (GL) action on growth, GA activity and IAA and ABA contents during seedling deetiolation of two Arabidopsis thaliana (L.) Heynh lines of Landsnerg erecta ecotype (wild type Ler and mutant hy4) and of Phaseolus vulgaris L. It was shown that a growth responses of Ler hypocotyls to GL of 515 nm and Ler cotyledons to GL of 542 nm were weaker than those of the hy4 mutant defected in the CRY1 synthesis. Far-red light (730 nm) neutralized the effect of GL (533 nm) on the phytohormone balance in the primary kidney bean leaves. The data obtained permit a supposition that plants possess several photoregulatory systems functioning under GL of higher (515 nm) and lower emission energy (542–553 nm). A possible operation of GL receptors, other than cryptochrome 1 and phytochromes, is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Role of Cryptochrome 1 and Phytochromes in the Control of Plant Photomorphogenetic Responses to Green Light

Loading next page...
 
/lp/springer_journal/the-role-of-cryptochrome-1-and-phytochromes-in-the-control-of-plant-hJeXeU90va
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0108-4
Publisher site
See Article on Publisher Site

Abstract

We studied the role of cryptochrome 1 (CRY1) and phytochromes in the photomorphogenetic responses of plants to the middle-wavelength region of photosynthetically active radiation. A comparison was performed of green light (GL) action on growth, GA activity and IAA and ABA contents during seedling deetiolation of two Arabidopsis thaliana (L.) Heynh lines of Landsnerg erecta ecotype (wild type Ler and mutant hy4) and of Phaseolus vulgaris L. It was shown that a growth responses of Ler hypocotyls to GL of 515 nm and Ler cotyledons to GL of 542 nm were weaker than those of the hy4 mutant defected in the CRY1 synthesis. Far-red light (730 nm) neutralized the effect of GL (533 nm) on the phytohormone balance in the primary kidney bean leaves. The data obtained permit a supposition that plants possess several photoregulatory systems functioning under GL of higher (515 nm) and lower emission energy (542–553 nm). A possible operation of GL receptors, other than cryptochrome 1 and phytochromes, is discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Nov 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off