The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis

The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis The Arabidopsis A1-type cyclin, CYCA1;2, also named TARDY ASYNCHRONOUS MEIOSIS (TAM), is known for its positive role in meiotic cell cycle progression, but its function in other cells has not been characterized. This paper reports the role of CYCA1;2/TAM in differentiated cells in vegetative organs. The pattern of CYCA1;2/TAM expression was investigated by promoter and protein fusions using the β-glucuronidase and the green fluorescent protein, respectively. The relevance of the promoter region used in these gene fusion constructs was verified by the effective complementation of the phenotype of the diploid null allele, tam-2 2C by a genomic fragment containing the wild-type coding region of CYCA1;2/TAM and the promoter region. CYCA1;2/TAM expression was found primarily in non-proliferating cells such as guard cells, trichomes, and mesophyll cells, and in vascular tissue. In two types of overexpression lines, one containing the CYCA1;2/TAM transgene driven by the ARABIDOPSIS SKP1-LIKE1 (ASK1) promoter and the other CYCA1;2/TAM–GFP driven by the cauliflower mosaic virus 35S promoter, the largest differences between the transgene transcript levels were approximately 72- and 45-folds, respectively, but the TAM–GFP signal levels in the mesophyll and stomata in the 35S:TAM–GFP lines only differ slightly. Furthermore, the GFP signals in the mesophyll and stomata in the TAM:TAM–GFP and 35S:TAM–GFP lines were all at similarly low levels. These results indicate that the CYCA1;2/TAM protein is likely maintained at low levels in these cells through post-transcriptional regulation. Loss of function in CYCA1;2/TAM resulted in increases in the nuclear size in both trichomes and guard cells. Surprisingly, overexpression of CYCA1;2/TAM led to similar increases. The large increases in trichome nuclear size likely reflected ploidy increases while the moderate increases in guard cell nuclear size did not justify for a ploidy increase. These nuclear size increases were not clearly correlated with trichome branch number increases and guard cell size increases, respectively. These results suggest that cellular homeostasis of the CYCA1;2/TAM protein is linked to the control of nuclear sizes in trichomes and guard cells. Plant Molecular Biology Springer Journals

The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial