The Response of Sugarcane (Saccharum officinarum) Cultured Cells to Anoxia and the Selection of a Tolerant Cell Line

The Response of Sugarcane (Saccharum officinarum) Cultured Cells to Anoxia and the Selection of a... The effect of anoxia on the sugarcane (Saccharum officinarum L.) cultured cells was studied in order to elaborate a technique for in vitro selection of cell lines, which would be tolerant to anaerobic stress. Inhibitory and lethal doses of anaerobic incubation were established from the state of the mitochondrial ultrastructure during the anaerobic incubation of cells either with or without exogenous glucose, as well as from the pattern of the post-anaerobic callus growth. An intact state of the mitochondrial ultrastructure and the viability of some cells in the presence of 3% glucose were shown to be maintained for at least 14 days of anaerobic incubation, while the index of post-anaerobic growth decreased by almost 50% even after 72-hour-long anaerobiosis. In the absence of exogenous glucose, a marked destruction of mitochondria and a twofold decrease in the callus growth index were observed as early as after six-hour-long anaerobic stress. A 48-hour-long incubation under these conditions resulted in the maintenance of the intact ultrastructure only in 7–10% of cells, while a 96-hour-long anaerobiosis brought about the complete degradation of the subcellular structure and cell death. A 48-hour-long anaerobiosis without exogenous glucose was chosen for selecting the anoxia-tolerant cell lines. After three cycles of selection, the anoxia tolerance of the selected cell line exceeded the respective index of the initial callus several-fold. In selected line, about 50% of cells retained viability and could resume growth even after 96-hour-long anaerobic incubation. The experimental results obtained were used to determine the possible causes of the heterogeneity of callus cells as regards their anoxia resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Response of Sugarcane (Saccharum officinarum) Cultured Cells to Anoxia and the Selection of a Tolerant Cell Line

Loading next page...
 
/lp/springer_journal/the-response-of-sugarcane-saccharum-officinarum-cultured-cells-to-h9VoG3Xy6W
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1015509506293
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial