The Response of Lupinus albus Roots to the Signal from Phosphorus-Deficient Substrate1

The Response of Lupinus albus Roots to the Signal from Phosphorus-Deficient Substrate1 The excretion of organic acids into the rhizosphere is induced by low phosphorus content in roots of white lupine (Lupinus albus L.). The aim of this study was to investigate how did the white lupine roots respond to the signals of P-deficiency in the substrate, by using the method of separating the root system into two parts, one part being placed into P-deficient solution and another part into P-sufficient solution. The results showed that the root tips (1-cm-long) accept the signal of P-deficiency in the substrate. This signal can be transmitted from one root tip to another, and can induce the accumulation and excretion of malic acid in the root tips and the development of proteoid roots. In order to investigate whether a phytohormone was involved in the response, the external hormones were used. Indole-3-butyric acid added to P-sufficient solution can induce the development of proteoid roots, but without any accumulation of citric acid in them. On the contrary, 6-benzyladenine (BA) added to the P-deficient solution can inhibit the development of proteoid roots and the accumulation of malic acid in the root tips. The inhibitory effect increases with increasing BA supply. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Response of Lupinus albus Roots to the Signal from Phosphorus-Deficient Substrate1

Loading next page...
 
/lp/springer_journal/the-response-of-lupinus-albus-roots-to-the-signal-from-phosphorus-03yf3QURrs
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000028687.22128.60
Publisher site
See Article on Publisher Site

Abstract

The excretion of organic acids into the rhizosphere is induced by low phosphorus content in roots of white lupine (Lupinus albus L.). The aim of this study was to investigate how did the white lupine roots respond to the signals of P-deficiency in the substrate, by using the method of separating the root system into two parts, one part being placed into P-deficient solution and another part into P-sufficient solution. The results showed that the root tips (1-cm-long) accept the signal of P-deficiency in the substrate. This signal can be transmitted from one root tip to another, and can induce the accumulation and excretion of malic acid in the root tips and the development of proteoid roots. In order to investigate whether a phytohormone was involved in the response, the external hormones were used. Indole-3-butyric acid added to P-sufficient solution can induce the development of proteoid roots, but without any accumulation of citric acid in them. On the contrary, 6-benzyladenine (BA) added to the P-deficient solution can inhibit the development of proteoid roots and the accumulation of malic acid in the root tips. The inhibitory effect increases with increasing BA supply.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off