The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies

The replicability of QTLs for murine alcohol preference drinking behavior across eight... On the basis of eight independent quantitative trait loci (QTL) studies of ethanol (alcohol) preference drinking in mice, a meta-analysis was carried out to examine the replicability of QTLs across studies and to enhance the power of QTL detection and parameter estimation. To avoid genetic heterogeneity, we analyzed only studies of mapping populations derived from the C57BL/6 (B6) and DBA/2 (D2) inbred progenitor strains. Because these studies were carried out in five different laboratories, there were substantial differences in testing procedure, data analysis, and especially in the choice of mapping population (BXD recombinant inbred strains, F2, backcross, selected lines, or congenic strains). Despite this, we found several QTLs that were sufficiently robust as to appear consistently across studies given the strengths and weaknesses of the mapping populations employed. These were on Chromosomes (Chrs) 2 (proximal to mid), 3 (mid to distal), 4 (distal), and 9 (proximal to mid). The P value for each of these QTLs, combined across all applicable studies, ranged from 10−7 to 10−15, with the additive effect of each QTL accounting for 3–5% of the trait variance extrapolated to an F2 population. Two other QTLs on Chrs 1 (distal) and 11 (mid) were less consistent, but still reached overall significance (P < .0001). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies

Loading next page...
 
/lp/springer_journal/the-replicability-of-qtls-for-murine-alcohol-preference-drinking-aq2KV6gxsy
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-001-2074-2
Publisher site
See Article on Publisher Site

Abstract

On the basis of eight independent quantitative trait loci (QTL) studies of ethanol (alcohol) preference drinking in mice, a meta-analysis was carried out to examine the replicability of QTLs across studies and to enhance the power of QTL detection and parameter estimation. To avoid genetic heterogeneity, we analyzed only studies of mapping populations derived from the C57BL/6 (B6) and DBA/2 (D2) inbred progenitor strains. Because these studies were carried out in five different laboratories, there were substantial differences in testing procedure, data analysis, and especially in the choice of mapping population (BXD recombinant inbred strains, F2, backcross, selected lines, or congenic strains). Despite this, we found several QTLs that were sufficiently robust as to appear consistently across studies given the strengths and weaknesses of the mapping populations employed. These were on Chromosomes (Chrs) 2 (proximal to mid), 3 (mid to distal), 4 (distal), and 9 (proximal to mid). The P value for each of these QTLs, combined across all applicable studies, ranged from 10−7 to 10−15, with the additive effect of each QTL accounting for 3–5% of the trait variance extrapolated to an F2 population. Two other QTLs on Chrs 1 (distal) and 11 (mid) were less consistent, but still reached overall significance (P < .0001).

Journal

Mammalian GenomeSpringer Journals

Published: Feb 19, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off