The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates

The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the... As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates

Loading next page...
 
/lp/springer_journal/the-removal-of-styrene-using-a-dielectric-barrier-discharge-dbd-Xa6pGqWxK1
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0664-0
Publisher site
See Article on Publisher Site

Abstract

As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 26, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off