The Relationship between the Traits of the Two-Row Spike, the High Number of Thillers, and the High Regeneration Capacity in in vitro Culture in Barley

The Relationship between the Traits of the Two-Row Spike, the High Number of Thillers, and the... In barley (Hordeum vulgare L.), the traits of the two-row spike, the high rate of plant tillering, and the high capacity for multiple plant regeneration (MPR) in a callus culture of immature embryos were shown to correlate. When a dihaploid line (DH) obtained from cv. Golden Promise (two-row spike, high number of thillers) was crossed to a DH line from cv. Bruce (six-row spike, low number of thillers), the two-row trait dominated the F1 generation, whereas, in F2, the segregation ratio was 3 : 1. From F3 progeny, we isolated the families comprising two-row homo- and heterozygotes and six-row homozygotes. In an F3 hybrid population, the two-row plants manifested higher tillering and MPR rates as compared to the six-row plants. The correlation between the traits of the two-row spike, the high tillering, and the high MPR capacity may depend on the pleiotropic V gene, which controls the general mechanisms of meristem functioning essential for the development of these three traits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Relationship between the Traits of the Two-Row Spike, the High Number of Thillers, and the High Regeneration Capacity in in vitro Culture in Barley

Loading next page...
 
/lp/springer_journal/the-relationship-between-the-traits-of-the-two-row-spike-the-high-ymU5ciCfPo
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1020249204282
Publisher site
See Article on Publisher Site

Abstract

In barley (Hordeum vulgare L.), the traits of the two-row spike, the high rate of plant tillering, and the high capacity for multiple plant regeneration (MPR) in a callus culture of immature embryos were shown to correlate. When a dihaploid line (DH) obtained from cv. Golden Promise (two-row spike, high number of thillers) was crossed to a DH line from cv. Bruce (six-row spike, low number of thillers), the two-row trait dominated the F1 generation, whereas, in F2, the segregation ratio was 3 : 1. From F3 progeny, we isolated the families comprising two-row homo- and heterozygotes and six-row homozygotes. In an F3 hybrid population, the two-row plants manifested higher tillering and MPR rates as compared to the six-row plants. The correlation between the traits of the two-row spike, the high tillering, and the high MPR capacity may depend on the pleiotropic V gene, which controls the general mechanisms of meristem functioning essential for the development of these three traits.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off