The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum)

The relationship between proline content, the expression level of P5CS... Many plants accumulate proline (Pro) when suffered from drought; thus, the relationship between Pro accumulation and plant drought tolerance becomes an increasing concern. Pro is synthesized from either glutamine or ornithine, and the former pathway dominates under osmotic stress conditions. In this study, the dynamic accumulation of free Pro under drought stress in 10 genotypes of Tibetan hulless barley (Hordeum vulgare var. nudum) with water lose rate (WLR) of 0.3304 to 0.5839 g/(h g dry wt) was investigated. However, no correlation between Pro accumulation and drought tolerance was found. Furthermore, the barley stripe mosaic virus establisheding virus-induced gene silencing was employed to suppress the expression of the encoding gene Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS), which catalyzes the ratelimiting step of Glu pathway in Pro biosynthesis. By the quantitative real-time polymerase chain reaction, the decrease of the P5CS expression was found, and a consequent Pro degradation was also detected in P5CS-silenced plants. However, neither increased WLR of detached leaves nor decreased survival rate under drought stress was found compared with control plants. These results suggested that the repressed expression of P5CS and decreased content of free Pro may not interfere with the drought tolerance of Tibetan hulless barley. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum)

Loading next page...
1
 
/lp/springer_journal/the-relationship-between-proline-content-the-expression-level-of-p5cs-CLbtyuOTWH
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713050038
Publisher site
See Article on Publisher Site

Abstract

Many plants accumulate proline (Pro) when suffered from drought; thus, the relationship between Pro accumulation and plant drought tolerance becomes an increasing concern. Pro is synthesized from either glutamine or ornithine, and the former pathway dominates under osmotic stress conditions. In this study, the dynamic accumulation of free Pro under drought stress in 10 genotypes of Tibetan hulless barley (Hordeum vulgare var. nudum) with water lose rate (WLR) of 0.3304 to 0.5839 g/(h g dry wt) was investigated. However, no correlation between Pro accumulation and drought tolerance was found. Furthermore, the barley stripe mosaic virus establisheding virus-induced gene silencing was employed to suppress the expression of the encoding gene Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS), which catalyzes the ratelimiting step of Glu pathway in Pro biosynthesis. By the quantitative real-time polymerase chain reaction, the decrease of the P5CS expression was found, and a consequent Pro degradation was also detected in P5CS-silenced plants. However, neither increased WLR of detached leaves nor decreased survival rate under drought stress was found compared with control plants. These results suggested that the repressed expression of P5CS and decreased content of free Pro may not interfere with the drought tolerance of Tibetan hulless barley.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off