The relation between the mean difference and the mean deviation in 11 continuous distribution models

The relation between the mean difference and the mean deviation in 11 continuous distribution models The aim of this paper is to examine the relations between the mean difference and the mean deviation with reference to the main continuous distribution models. At present, the analytical expressions of the mean difference, in a more or less compact form, have been developed for almost all the continuous distribution models. The numerical calculation of the mean difference is, instead, always possible for any distribution model. The distribution models without the shape parameters, those with only one shape parameter and those with two shape parameters have been considered. The perfect rank correlation between the values of the two indexes for the models without shape parameters have been ensured. In the case of models with only one shape parameter, it has been observed that, when the shape parameter changes, the two indexes are both increasing or both decreasing, so that the relation between the same is growing. The relation between the two indexes has allowed detection of the intervals in which one index is greater than the other and that in which it is less. Similar findings emerged when dealing with models with two shape parameters determining the region in which one index is greater than the other and as well as the complementary one. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

The relation between the mean difference and the mean deviation in 11 continuous distribution models

Loading next page...
 
/lp/springer_journal/the-relation-between-the-mean-difference-and-the-mean-deviation-in-11-20iKa5KQli
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-016-0427-x
Publisher site
See Article on Publisher Site

Abstract

The aim of this paper is to examine the relations between the mean difference and the mean deviation with reference to the main continuous distribution models. At present, the analytical expressions of the mean difference, in a more or less compact form, have been developed for almost all the continuous distribution models. The numerical calculation of the mean difference is, instead, always possible for any distribution model. The distribution models without the shape parameters, those with only one shape parameter and those with two shape parameters have been considered. The perfect rank correlation between the values of the two indexes for the models without shape parameters have been ensured. In the case of models with only one shape parameter, it has been observed that, when the shape parameter changes, the two indexes are both increasing or both decreasing, so that the relation between the same is growing. The relation between the two indexes has allowed detection of the intervals in which one index is greater than the other and that in which it is less. Similar findings emerged when dealing with models with two shape parameters determining the region in which one index is greater than the other and as well as the complementary one.

Journal

Quality & QuantitySpringer Journals

Published: Oct 6, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off