The reactivity of 2,5-diaminoimidazolone base modification towards aliphatic primary amino derivatives: nucleophilic substitution at C5 as a potential source of abasic sites in oxidatively damaged DNA

The reactivity of 2,5-diaminoimidazolone base modification towards aliphatic primary amino... N5-deoxyribosyl derivatives of 2,5-diaminoimidazolone formed by oxidative damage to the guanine bases in 2-deoxyguanosine and highly polymerized DNA readily undergo nucleophilic substitution at C5 in reaction with primary amines in neutral aqueous solutions at 37–70 °C, as it was found in a kinetic study using reverse-phase HPLC. The reaction of 2-amino-5-[(2′-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) with excess of ethanolamine, alanine and γ-aminobutyric acid (0.2–1 M) is a pseudo-first-order process that proceeds with 45–80 % yields depending on the nature of the amine, its concentration, and the reaction temperature. In the case of ethanolamine, the corresponding bimolecular rate constant has a pre-exponential factor and activation energy of 1.1 × 105 s−1 and 47 kJ mol−1, respectively. The reaction is highly competitive with the previously described hydrolysis of dIz into 2,2-diamino-4-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone under biologically relevant conditions. A similar reaction with the same lesion in polymeric DNA results in the release of a low-molecular-weight analog of dIz, presumably producing an abasic site as the second reaction product. Kinetic characteristics of this process make it a potentially important source of abasic sites in oxidatively damaged DNA, formed through the reaction of 2,5-diaminoimidazolone lesions with naturally abundant DNA-affinic amines and proteins. The release of low-molecular-weight analogs of dIz can potentially be employed for quantification of imidazolone lesions in oxidized DNA. The half-life of imidazolone lesions in double-stranded DNA evaluated using this approach was found to be 154 min at 37 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The reactivity of 2,5-diaminoimidazolone base modification towards aliphatic primary amino derivatives: nucleophilic substitution at C5 as a potential source of abasic sites in oxidatively damaged DNA

Loading next page...
 
/lp/springer_journal/the-reactivity-of-2-5-diaminoimidazolone-base-modification-towards-g2z4Gcd969
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2714-5
Publisher site
See Article on Publisher Site

Abstract

N5-deoxyribosyl derivatives of 2,5-diaminoimidazolone formed by oxidative damage to the guanine bases in 2-deoxyguanosine and highly polymerized DNA readily undergo nucleophilic substitution at C5 in reaction with primary amines in neutral aqueous solutions at 37–70 °C, as it was found in a kinetic study using reverse-phase HPLC. The reaction of 2-amino-5-[(2′-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) with excess of ethanolamine, alanine and γ-aminobutyric acid (0.2–1 M) is a pseudo-first-order process that proceeds with 45–80 % yields depending on the nature of the amine, its concentration, and the reaction temperature. In the case of ethanolamine, the corresponding bimolecular rate constant has a pre-exponential factor and activation energy of 1.1 × 105 s−1 and 47 kJ mol−1, respectively. The reaction is highly competitive with the previously described hydrolysis of dIz into 2,2-diamino-4-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone under biologically relevant conditions. A similar reaction with the same lesion in polymeric DNA results in the release of a low-molecular-weight analog of dIz, presumably producing an abasic site as the second reaction product. Kinetic characteristics of this process make it a potentially important source of abasic sites in oxidatively damaged DNA, formed through the reaction of 2,5-diaminoimidazolone lesions with naturally abundant DNA-affinic amines and proteins. The release of low-molecular-weight analogs of dIz can potentially be employed for quantification of imidazolone lesions in oxidized DNA. The half-life of imidazolone lesions in double-stranded DNA evaluated using this approach was found to be 154 min at 37 °C.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 6, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off