The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors

The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors Activating mutations in KRAS are among the most common tumor driver mutations. Until recently, KRAS had been considered undruggable with small molecules; the discovery of the covalent KRASG12C inhibitors ARS-853 and ARS-1620 has demonstrated that it is feasible to inhibit KRAS with high potency in cells and animals. Although the biological activity of these inhibitors has been described, the biochemical mechanism of how the compounds achieve potent inhibition remained incompletely understood. We now show that the activity of ARS-853 and ARS-1620 is primarily driven by KRAS-mediated catalysis of the chemical reaction with Cys12 in human KRASG12C, while the reversible binding affinity is weak, in the hundreds of micromolar or higher range. The mechanism resolves how an induced, shallow and dynamic pocket not expected to support high-affinity binding of small molecules can nevertheless be targeted with potent inhibitors and may be applicable to other targets conventionally considered undruggable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Structural & Molecular Biology Springer Journals

The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors

Loading next page...
 
/lp/springer_journal/the-reactivity-driven-biochemical-mechanism-of-covalent-krasg12c-Audb5tVLWB
Publisher
Nature Publishing Group US
Copyright
Copyright © 2018 by The Author(s)
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Protein Structure; Membrane Biology; Biological Microscopy
ISSN
1545-9993
eISSN
1545-9985
D.O.I.
10.1038/s41594-018-0061-5
Publisher site
See Article on Publisher Site

Abstract

Activating mutations in KRAS are among the most common tumor driver mutations. Until recently, KRAS had been considered undruggable with small molecules; the discovery of the covalent KRASG12C inhibitors ARS-853 and ARS-1620 has demonstrated that it is feasible to inhibit KRAS with high potency in cells and animals. Although the biological activity of these inhibitors has been described, the biochemical mechanism of how the compounds achieve potent inhibition remained incompletely understood. We now show that the activity of ARS-853 and ARS-1620 is primarily driven by KRAS-mediated catalysis of the chemical reaction with Cys12 in human KRASG12C, while the reversible binding affinity is weak, in the hundreds of micromolar or higher range. The mechanism resolves how an induced, shallow and dynamic pocket not expected to support high-affinity binding of small molecules can nevertheless be targeted with potent inhibitors and may be applicable to other targets conventionally considered undruggable.

Journal

Nature Structural & Molecular BiologySpringer Journals

Published: May 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off