The Quantum Setting with Randomized Queries for Continuous Problems

The Quantum Setting with Randomized Queries for Continuous Problems The standard setting of quantum computation for continuous problems uses deterministic queries and the only source of randomness for quantum algorithms is through measurement. Without loss of generality we may consider quantum algorithms which use only one measurement. This setting is related to the worst case setting on a classical computer in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the worst case information complexity of this problem. Since the number of qubits must be finite, we cannot solve continuous problems on a quantum computer with infinite worst case information complexity. This can even happen for continuous problems with small randomized complexity on a classical computer. A simple example is integration of bounded continuous functions. To overcome this bad property that limits the power of quantum computation for continuous problems, we study the quantum setting in which randomized queries are allowed. This type of query is used in Shor’s algorithm. The quantum setting with randomized queries is related to the randomized classical setting in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the randomized information complexity of this problem. Hence, there is also a limit to the power of the quantum setting with randomized queries since we cannot solve continuous problems with infinite randomized information complexity. An example is approximation of bounded continuous functions. We study the quantum setting with randomized queries for a number of problems in terms of the query and qubit complexities defined as the minimal number of queries/qubits needed to solve the problem to within ɛ by a quantum algorithm. We prove that for path integration we have an exponential improvement for the qubit complexity over the quantum setting with deterministic queries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The Quantum Setting with Randomized Queries for Continuous Problems

Loading next page...
 
/lp/springer_journal/the-quantum-setting-with-randomized-queries-for-continuous-problems-ZKmzB83OTb
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-006-0013-6
Publisher site
See Article on Publisher Site

Abstract

The standard setting of quantum computation for continuous problems uses deterministic queries and the only source of randomness for quantum algorithms is through measurement. Without loss of generality we may consider quantum algorithms which use only one measurement. This setting is related to the worst case setting on a classical computer in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the worst case information complexity of this problem. Since the number of qubits must be finite, we cannot solve continuous problems on a quantum computer with infinite worst case information complexity. This can even happen for continuous problems with small randomized complexity on a classical computer. A simple example is integration of bounded continuous functions. To overcome this bad property that limits the power of quantum computation for continuous problems, we study the quantum setting in which randomized queries are allowed. This type of query is used in Shor’s algorithm. The quantum setting with randomized queries is related to the randomized classical setting in the sense that the number of qubits needed to solve a continuous problem must be at least equal to the logarithm of the randomized information complexity of this problem. Hence, there is also a limit to the power of the quantum setting with randomized queries since we cannot solve continuous problems with infinite randomized information complexity. An example is approximation of bounded continuous functions. We study the quantum setting with randomized queries for a number of problems in terms of the query and qubit complexities defined as the minimal number of queries/qubits needed to solve the problem to within ɛ by a quantum algorithm. We prove that for path integration we have an exponential improvement for the qubit complexity over the quantum setting with deterministic queries.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 3, 2006

References

  • Quantum complexity theory
    Bernstein, E.; Vazirani, U.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off