The quantum realization of Arnold and Fibonacci image scrambling

The quantum realization of Arnold and Fibonacci image scrambling The quantum Fourier transform, the quantum wavelet transform, etc., have been shown to be a powerful tool in developing quantum algorithms. However, in classical computing, there is another kind of transforms, image scrambling, which are as useful as Fourier transform, wavelet transform, etc. The main aim of image scrambling, which is generally used as the preprocessing or postprocessing in the confidentiality storage and transmission, and image information hiding, was to transform a meaningful image into a meaningless or disordered image in order to enhance the image security. In classical image processing, Arnold and Fibonacci image scrambling are often used. In order to realize these two image scrambling in quantum computers, this paper proposes the scrambling quantum circuits based on the flexible representation for quantum images. The circuits take advantage of the plain adder and adder modulo $$N$$ N to factor the classical transformations into basic unitary operators such as Control-NOT gates and Toffoli gates. Theoretical analysis indicates that the network complexity grows linearly with the size of the number to be operated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The quantum realization of Arnold and Fibonacci image scrambling

Loading next page...
 
/lp/springer_journal/the-quantum-realization-of-arnold-and-fibonacci-image-scrambling-EFY7jLt5eJ
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0721-7
Publisher site
See Article on Publisher Site

Abstract

The quantum Fourier transform, the quantum wavelet transform, etc., have been shown to be a powerful tool in developing quantum algorithms. However, in classical computing, there is another kind of transforms, image scrambling, which are as useful as Fourier transform, wavelet transform, etc. The main aim of image scrambling, which is generally used as the preprocessing or postprocessing in the confidentiality storage and transmission, and image information hiding, was to transform a meaningful image into a meaningless or disordered image in order to enhance the image security. In classical image processing, Arnold and Fibonacci image scrambling are often used. In order to realize these two image scrambling in quantum computers, this paper proposes the scrambling quantum circuits based on the flexible representation for quantum images. The circuits take advantage of the plain adder and adder modulo $$N$$ N to factor the classical transformations into basic unitary operators such as Control-NOT gates and Toffoli gates. Theoretical analysis indicates that the network complexity grows linearly with the size of the number to be operated.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 14, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off