The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice

The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce... Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is known to play a role in inducing the dormancy. qSD12 is a major seed dormancy quantitative trait locus (QTL) identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidates from weedy rice, and determine the relation of the dormancy gene to ABA. A fine mapping experiment, followed by marker-assisted progeny testing for selected recombinants, narrowed down qSD12 to a genomic region of <75 kb, where there are nine predicted genes including a cluster of six transposon/retrotransposon protein genes and three putative (a PIL5, a hypothetic protein, and a bHLH transcription factor) genes based on the annotated Nipponbare genome sequence. The PIL5 and bHLH genes are more likely to be the QTL candidate genes. A bacterial artificial chromosome (BAC) library equivalent to 8–9 times of the haploid genome size was constructed for the weedy rice. One of the two BAC contigs developed from the library covers the PIL5 to bHLH interval. A pair of lines different only in the QTL-containing region of <200 kb was developed as isogenic lines for the qSD12 dormancy and non-dormancy alleles. The dormant line accumulated much higher ABA in 10-day developing seeds than the non-dormant line. In the QTL-containing region there is no predicted gene that has been assigned to ABA biosynthetic or metabolic pathways. Thus, it is concluded that the qSD12 underlying gene promotes ABA accumulation in early developing seeds to induce primary seed dormancy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice

Loading next page...
 
/lp/springer_journal/the-qsd12-underlying-gene-promotes-abscisic-acid-accumulation-in-early-Eqd9n1O6S3
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9555-1
Publisher site
See Article on Publisher Site

Abstract

Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is known to play a role in inducing the dormancy. qSD12 is a major seed dormancy quantitative trait locus (QTL) identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidates from weedy rice, and determine the relation of the dormancy gene to ABA. A fine mapping experiment, followed by marker-assisted progeny testing for selected recombinants, narrowed down qSD12 to a genomic region of <75 kb, where there are nine predicted genes including a cluster of six transposon/retrotransposon protein genes and three putative (a PIL5, a hypothetic protein, and a bHLH transcription factor) genes based on the annotated Nipponbare genome sequence. The PIL5 and bHLH genes are more likely to be the QTL candidate genes. A bacterial artificial chromosome (BAC) library equivalent to 8–9 times of the haploid genome size was constructed for the weedy rice. One of the two BAC contigs developed from the library covers the PIL5 to bHLH interval. A pair of lines different only in the QTL-containing region of <200 kb was developed as isogenic lines for the qSD12 dormancy and non-dormancy alleles. The dormant line accumulated much higher ABA in 10-day developing seeds than the non-dormant line. In the QTL-containing region there is no predicted gene that has been assigned to ABA biosynthetic or metabolic pathways. Thus, it is concluded that the qSD12 underlying gene promotes ABA accumulation in early developing seeds to induce primary seed dormancy.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off